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The Anderson metal-insulator transport transition
Francois Germinet and Abel Klein

ABSTRACT. We discuss a new approach to the metal-insulator transition for
random operators, based on transport instead of spectral properties. It applies
to random Schrédinger operators, acoustic operators in random media, and
Maxwell operators in random media. We define a local transport exponent
B(E), and set the metallic transport region to be the part of the spectrum
with nontrivial transport (i.e., B(E) > 0). The strong insulator region is taken
to be the part of the spectrum where the random operator exhibits strong
dynamical localization in the Hilbert-Schmidt norm, and hence no transport.
For the standard random operators satisfying a Wegner estimate, these metallic
and insulator regions are shown to be complementary sets in the spectrum
of the random operator, and the local transport exponent B(E) provides a
characterization of the metal-insulator transport transition. If such a transition
occurs, then B(E) has to be discontinuous at a transport mobility edge: if the
transport is nontrivial then S(E) > W}d’ where d is the space dimension and
b > 1 is the power of the volume in Wegner’s estimate. We also examine
the transport transition for random polymer models, where the random dimer
models provide explicit examples of the transport transition and of a transport
mobility edge.

1. Introduction

In this survey we discuss a new approach to the metal-insulator transition for
random operators based on transport instead of spectral properties, introduced in
[GK3]. This new point of view, in addition to being closer to the physical meaning
of a “metal-insulator” transition, is shown to give a better understanding of the
transition.

By a random operator we always mean a Z%*-ergodic random self-adjoint opera-
tor H, on either L2(R?,dz;C") or £2(Z?; C"), where w belongs to a probability set
Q with a probability measure P and expectation E. Note that ergodicity implies the
existence of a nonrandom set ¥, such that o(H,) = ¥ with probability one, where
o(A) denotes the spectrum of the operator A. In addition, there are nonrandom
sets Ypp, Yac, and Y., which are the pure point spectrum, absolutely continuous
spectrum, and singular continuous spectrum of H,,, respectively, with probability
one (see [KM]).
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For a Schrédinger operator with a random potential and spectrum of the form
[Eg, ), the following picture of a metal-insulator transition has emerged (e.g.,
[LGP, Section 4.2]): Near the bottom of the spectrum Ej the spectrum is con-
trolled by large fluctuations of the potential, with the corresponding states localized
primarily in the regions of such fluctuations. But in three or more dimensions, at
very large energies the kinetic term should dominate the fluctuations of the poten-
tial to produce extended states. Thus a transition must occur from an insulator
regime, characterized by localized states, to a very different metallic regime charac-
terized by extended states. The energy FE,,. at which this metal-insulator transition
occurs is called the mobility edge. The medium should have zero conductivity in the
insulator region [Ey, Fme] and nonzero conductivity in the metallic region [Eme, ).

The standard mathematical interpretation of the metal-insulator transition is
as a spectral transition: the random Schrédinger operator should have pure point
spectrum with exponentially decaying eigenstates in the interval [Ey, Eme] and ab-
solutely continuous spectrum on the interval [Epe, 00).

The existence of exponential localization (i.e., pure point spectrum with expo-
nentially decaying eigenstates) is by now well established (e.g., [GMP, KS, FS,
HM, FMSS, CKM, vDK, AM, Ai, CH1, Klo2, KSS, FLM, ASFH, Wa2,
GK1, Klo3, Klo4, U, GK4|). But there are no mathematical results on the
existence of continuous spectrum and a metal-insulator transition. (Except for the
special case of the Anderson model on the Bethe lattice, where one of us has proved
that for small disorder the random operator has purely absolutely continuous spec-
trum in a nontrivial interval [Klel] and nontrivial transport [Kle2].)

In [GK3] we proposed a new approach to the metal-insulator transition based
on transport instead of spectral properties, which we describe in this survey. It
relies on a local transport exponent B(E); the metallic transport region is set to
be the part of the spectrum with nontrivial transport (i.e., 8(E) > 0). The strong
insulator region is defined as the part of the spectrum where the random operator
exhibits strong dynamical localization in the Hilbert-Schmidt norm, and hence no
transport. There is a natural definition of a transport mobility edge between the
strong insulator and the metallic transport regions. (See Section 2.)

For the standard random operators satisfying a Wegner estimate, these metallic
and insulator regions are shown to be complementary sets in the spectrum of the
random operator. (This rules out the possibility of trivial transport, i.e., transport
with B(E) = 0.) Thus the local transport exponent 3(F) provides a characteriza-
tion of the metal-insulator transport transition. Moreover, S(E) is discontinuous at
a transport mobility edge: if the transport is nontrivial then 3(E) > 5, where d
is the space dimension and b > 1 is the power of the volume in Wegner’s estimate.
(See Section 3.)

We illustrate these concepts in the case of random polymer models. They may
have critical energies, and Jitomirskaya, Schulz-Baldes and Stolz [JSBS] showed
that critical energies creates transport. We extend their results to local tranport
exponents, proving that critical energies must be in the metallic transport region.
For the special case of the random dimer model, we combine this fact with the
results of De Bi¢vre and Germinet [DBG] to give a complete description of the
transport transition and exhibit tranport mobility edges. (See Section 4.)



THE ANDERSON METAL-INSULATOR TRANSPORT TRANSITION 3

2. The transport transition

Let H, be a random operator on L2(R%,dz;C") (or £2(Z%;C")). By x. we
denote the characteristic function of the the cube of side 1 centered at z € R?.
If z € R? we write (x) = 4/1+ |z|2, and let (X) denote the operator given by
multiplication by the function (z). Given an open interval I C R, we denote by
Cg°(I) the class of real valued infinitely differentiable functions on R with compact
support contained in I, with C2% (I) being the subclass of nonnegative functions.
The Hilbert-Schmidt norm of an operator A is written as || A||z, i.e., ||A]|3 = tr A*A.

The (random) moment of order n > 0 at time ¢ for the time evolution in the
Hilbert-Schmidt norm, initially spatially localized in the cube of side one around
the origin, and “localized” in energy by the function X € C¢2°, (R), is given by

1) Mo (, ,0) = || () B R (L

its expectation by

(2) M(n, X,t) = E{M,(n, X,t)},
and its time averaged expectation by
2 [ 2
(3) M(n, X, T) = T e TM(n, X,t)dt.
0

These quantities are finite for the usual random operators, including random
Schrédinger operators, random Landau Hamiltonians, and acoustic and Maxwell
operators in random media. (The required properties are a trace estimate and a
kernel polynomial decay estimate as stated in [GK3, Lemmas A.4 and A.5]; they
hold in great generality.) If X (H,,) # 0 (X (H.) is either = 0 or # 0 with probability
one) we have [GK3, Proposition 3.1]:

(4) 0 < M (0,%,0) < My(n, X,t) < Cazn " F1H for Pare. w,
(5) 0 < M(0,¥,0) < M(n, X,t) < Caxn (" ¥4,
(6) 0 < M(0, X,0) < M(n, X,T) < Cl o o (D) ¥

where [u] denotes the largest integer < u.

To measure the rate of growth of moments of initially spatially localized wave
packets under the time evolution, “localized” in energy by X € Cg° (R) with
X(H,) # 0, we compute the (lower) transport exponent

s log M(n, X, T)

If X(H,) = 0 we set S(n,X) = 0. We define the n-th transport ezponent in an
open interval I by

(8) B(n,I)= sup B(n,X),
xec, (I)

and the n-th local transport exponent at the energy E by
(9) B(n, E) = it S(n,I).
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(B(n, E) provides a measure of the rate of transport for which E is responsible.)
The exponent 3(n, E) is increasing in n and satisfy the ballistic bound

(10) 0 < B(n, X), B(n,I), B(n,E) <1,

as shown in [GK3, Proposition 3.2]. Note that B(n,E) =0if E ¢ X.
The local (lower) transport exponent may be now defined by

(11) ,B(E)ani_{I;o,B(n,E)ZSlrllp,B(n,E),

and we have 0 < B(E) < 1, with B(E) =0 if E ¢ ¥. Note that S(E) > 0 if and
only if B(n, E) > 0 for some n > 0.
This motivates the following definition.

DEFINITION 2.1. The metallic transport region Yt for H,, is defined as the
set of energies with nontrivial transport:

(12) Yur ={E €R, B(E)>0}={E€X, 3(E)>0}.

Its complementary set in the spectrum will be called the trivial transport region Xpr
(note that logarithmic transport is not excluded a priori):

(13) Yrr = E\Eur = {E € £, B(E) =0}.

To make the connection with the absolutely contimuous spectrum, we recall
that the Guarneri-Combes-Last bound [Gu, Co, La] says that 3(E) > 1 if E €
Yac. (While the Guarneri-Combes-Last bound is stated for a fixed self-adjoint
operator, the same bound follows for random operators using Fatou’s Lemma and
Jensen’s inequality.) Thus

(14) Yac C {E €X, B(E)> (11} C XMT -

But the converse to the Guarneri-Combes-Last bound is not true, a lower bound
on the local transport exponent does not specify the spectrum (e.g., [DRJLS, La,
DBF, BGT, CM, GKT)).

The trivial transport region should be connected to localization, and indeed it
is, but to the right kind of localization. Pure point spectrum does not imply trivial
transport, there are counterexamples [DRJLS, JSBS, GKT]. The right notion
of localization is dynamical localization (which implies pure point spectrum).

DEFINITION 2.2. The random operator H,, erhibits strong HS-dynamical local-
ization in the open interval I if for all X € CZ° (I) we have

(15) ]E{supr(n,X,t)}<oo forallm > 0.
teR
The random operator H, erhibits strong HS-dynamical localization at the energy
E € R if there exists an open interval I, with E € I, such that there is strong
HS-dynamical localization in the open interval I.

The intuitive idea behind the last definition is that the moments of an initially
localized wave packet remain uniformly bounded under time evolution “localized”
in an open interval around the energy E. The Hilbert-Schmidt norm takes into
account all possible wave packets localized in a given bounded region.

DEFINITION 2.3. The strong insulator region X1 for H,, is defined as
Ys1 ={FE € ¥; H, ezhibits strong HS-dynamical localization at E} .
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We clearly have
(16) Yg1 C Y-

DEFINITION 2.4. An energy E € Yyt N Y1 will be called a transport mobility
edge.

Since the strong insulator region is a relatively open subset of the spectrum X,
we have Yg1 = {Ujvzl Ij} N X, where the I;’s are disjoint open intervals; N may
be either finite or infinite. A transport mobility edge must be an edge of one of the
intervals I;.

3. A characterization of the transport transition

Instead of giving a technical definition of the relevant class of random operators,
let us simply say that in this section by a standard random operator we mean one
of the following:

The Anderson model:
(17) H,=-A+YV, on £*(2%),

where A is the finite difference Laplacian and {V,,(z); = € Z%} are indepen-
dent identically distributed bounded random variables. (E.g., [FS, FMSS,
CKM, vDK, AM, Ai, ASFH, Wa2].)

Random Schrédinger operators (Anderson Hamiltonians):
(18) H,=-A+Vye +V, on L*R%dz),

where A is the Laplacian operator, Vper is a periodic potential (by rescaling

we take the period to be one) of the form Vjer = Vp(ér) + Vp(fr), with VP(Q,
i = 1,2, periodic with period one, 0 < Vp(elr) € LL.(R?,dz), p(e2r) relatively
form-bounded with respect to —A with relative bound < 1, and V,, a random

potential of the form

(19) Vo(z) = Z wi u(z — 1),

iclzd
quZ

where ¢ € N, w = {w;; i € %Zd} are independent identically distributed
bounded random variables, u is a real valued measurable function with com-
pact support, u € LP(R?, dz) with p > g ifd>2andp=2ifd=1. (See
[CH1, Klo2, KSS, GK3, GK4].)

Random Landau Hamiltonians:
(20) H,=Hy+V, on L*R?dz),

where Hyo = (—iV — A)?, A = £(22, —2), and the random potential V,, is

as in (19) with ¢ = 1 and u(z) bounded. (See [CH2, Wal, GK4].)
Maxwell operators in random media:
1 1

(21) H, = V x VX ! on L?(R? dz;C?)
po(z)  €w(T) s ()
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where VX is the operator given by the curl, ¢,(z) is the random dielectric
constant and p,, () is the random magnetic permeability. We take

(22) tu(®) = eo(@)r(z) ,with y(z) =1+ ) wiu(z —i),
(23) bo(z) = po(x)Bu(z) ,with B,(z) =1+ Z wiv(z — 1),

where ¢ € N, w = {w;; i € %Z‘i} are independent identically distributed
bounded random variables taking values in the interval [—1,1], eo(z) and
o (z) are periodic measurable functions (by rescaling we take the period to
be one), such that 0 < e_ <e(z) <ey <occand 0 < p_ < p(x) < py < o0
for some constants €1 and pi, u(z) and v(z) are nonnegative measurable
real valued functions with compact support, such that

(24) 0<U_<U(z)= Z ui(z) < Uz < oo,
'LE%Z"3

(25) 0<V_<V(@)= Y w@) < Vi<oo,
i€Lz3

for some constants Uy and Vi, with U_ +V_ > 0 and max{U,;,V;} < 1.
(See [FK2, Kle3, KK2].)
Acoustic operators in random media:
1 1 1
v.
ko(z)  Pu(T) k()
where V is the gradient operator, and, the random compressibility &, (z) and

the random mass density g, (z) are of the same form as €, (z) and p,(z) in
(22) and (23). (See [FK1, KK2]).

(26) H, =— on L%*(R?,dz),

These random operators satisfy all the requirements for the bootstrap mul-
tiscale analysis [GK1] in appropriate intervals, with the possible exception of a
Wegner estimate. They also satisfy an appropriate interior estimate [GK3, Lemma
A.2], and the kernel polynomial decay estimate of [GK2, Theorem 2] with nonran-
dom constants. (To be precise, a standard random operator is a random operator
satisfying Assumptions SLI, EDI, IAD, NE, and SGEE in [GK1], the interior es-
timate of [GK3, Lemma A.2], and the Assumptions of [GK4] with nonrandom
constants; these properties are routinely verified for the usual random operators.)

Although we frame our discussion for random operators on the continuum, our
results apply also to random operators on the lattice.

In our results a Wegner estimate in an open interval (Assumption W in [GK1])
will be an explicit hypothesis. To state it we need to consider the restriction of a
random operator H,, to a finite box. By Ay (z) we denote the open box (or cube)
of side L > 0:

(27) Ar(z) ={y e R% |ly -zl < L/2},

and by Ar(z) the closed box, where ||z|| = max{|z;|, i = 1,... ,d} . (We will use
|z| to denote the usual Euclidean norm.) We will also use the notation

(28) Xz,L = XAp(z)» in particular X = Xz,1 = XA; () -
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The operator H,, .1, is defined as an appropriate restriction of H,, to the box Ay (z)
(e.g., to the open box Ar(x) with Dirichlet boundary condition, or to the closed box
A1 (z) with periodic boundary condition). We write Ry, z,1.(2) = (Hy,z,r. —2) ! for
the finite volume resolvent.

We say that the random operator H,, satisfies a Wegner estimate in an open
interval T if there exist constants b > 1, 0 < nz < 1, and Qz, such that

(29) P{dist(c(Hy, 1), E) < n} < QrnL* ,

foral ECT,0<n<nz,z€Z% and L € 2N.

Wegner estimates have been proven for a large variety of random operators
[Weg, HM, CKM, CH1, Klo2, CH2, CHM, Ki, FK1, FK2, Wal, KSS,
St, CHN, HK, CHKN, KK2]|, under certain assumptions. (E.g., for random
Schrodinger operators the probability distribution of the random variable w; is
assumed to have a bounded density, and u(z) > 0.) Usually b =1 or 2.

If we have a Wegner estimate, we can prove a lower bound on the local transport
exponent in the mettalic transport region [GK3, Theorem 2.10], which may be
compared to the Guarneri-Combes-Last bound (see the paragraph containing (14)).
We use the notation B = BN T for a subset B of R.

THEOREM 3.1. Let H, be a standard random operator satisfying a Wegner
estimate in an open interval Z. If B(E) > 0 for some E € T then B(E) > 57, i.e.
the metallic transport region in Z is given by

1
T
= > — 5.
(30) A {E €T, B(E) > 2bd}
In fact, if E € Sip, then B(n, E) > 54 — 2£2 for all n > 0.

If the standard random operator satisfies a Wegner estimate we have equality
in (16) [GK3, Theorem 2.8]:

THEOREM 3.2. Let H, be a standard random operator satisfying a Wegner
estimate in an open interval Z. Then

(31) Egl = E%‘T'

In particular, the strong insulator region and the metallic transport region are com-
plementary sets in the spectrum XT of H,, in T, i.e.,

(32) N2l =0 and LU =37,

Theorem 3.2 shows that the local transport exponent 3(E) provides a charac-
terization of the metal-insulator transport transition. Theorem 3.1 says that if this
transition occurs, B(E) has to be discontinuous at a transport mobility edge.

The existence of a nontrivial strong insulator region is now proven for standard
random operators. It is a consequence of well established results on Anderson
localization and of the bootstrap multiscale analysis [GK1, Theorem 3.4] that yields
strong HS-dynamical localization [GK1, Corollary 3.10]. (See also [GDB, DS].
On the lattice strong HS-dynamical localization turns out to be the same as strong
dynamical localization (of wave packets) and was originally proven by Aizenman
[Ai, ASFH)].) The relevant results, adapted for this article, will now be stated.

Given z € Z¢, L € N, we set

(33) Iy = Z Xy, where Tp(z) = {y € Z% ly —z|| = L_1}.
yETL(:z)
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Given §# > 0, E € R, z € Z¢, and L € 6N, we say that the box Ar(z) is (9, E)-
suitable for H, if E ¢ o(H, ) and

1
(34) V2,2 Buv,,2 (E)Xz,1/3]l < 75 -

THEOREM 3.3. Let H, be a standard random operator satisfying a Wegner
estimate in an open interval . Given 0 > d, for each E € I there exists a finite
scale Lo(E) (depending on 0, E, Qz, d), bounded in compact subintervals of Z,
such that, if for some E € X NI we can verify at some finite scale L > Ly(E) that

(35) P{A£(0) is (6, E)-suitable} > 1 — 84% ,

then there exists an open interval I > E, such that H, has pure point spectrum
in I, with exponentially decaying eigenfunctions, and exhibits strong HS-dynamical
localization in I. In particular, E € Xgj.

Theorem 3.3 suggests the following definition.

DEFINITION 3.4. The multiscale analysis region Yyvsa is defined as the set of
energies where we can perform the bootstrap multiscale analysis:

Yumsa = {E € X; the hypotheses of Theorem 3.3 hold at E}.

(Note that if ¥ aym denotes the set of energies in the spectrum satisfying the
starting hypothesis of the Aizenman-Molchanov method [AM, Ai, ASFH], we
have EAM = EMSA-)

It follows that

(36) Tmsa C g1 C Y-
With a Wegner estimate we have equality in (36) [GK3, Theorem 2.8]:

THEOREM 3.5. Let H, be a standard random operator satisfying a Wegner
estimate in an open interval Z. Then X% C X5, and hence

(37) Z%ASA = 2%1 = E%‘T'

The equality (37) shows that the strong insulator region is canonical in the
sense that it may be defined by three equivalent conditions or properties, all very
natural. In fact the number of such conditions/properties is actually much larger
[GK3, Theorem 4.2]. In the analogy with classical statistical mechanics the strong
insulator region corresponds to the region of complete analyticity [DoSh1l, DoSh2].

Theorem 3.2 is a corollary of Theorem 3.5. Theorems 3.1 and 3.5 are conse-
quences of the fact that slow transport cannot take place for random operators
satisfying our assumptions [GK3, Theorem 2.11]. (A weaker form of this result
has been discussed by Martinelli and Scoppola [MS, Section 8] for the discrete
Anderson model.)

THEOREM 3.6. Let H, be a standard random operator satisfying a Wegner
estimate in an open interval Z. Let X € C’gf’_,_(R), with X = 1 on some open
interval J CZ, a > 0, and n > 2bda + (90 + 2)d. If

1
(38) lim inf T—aM(n, X,T) < o,

T—o0

then JNX C Xmsa, and hence J N'Y C Xgr.
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Theorem 3.6 has the following immediate corollary, which can be read as fol-

lows: if the transport at an energy E is too slow (i.e., 8(n,E) < Tld — 92bb—+nQ for

some n > (9b + 2)d), then strong HS-dynamical localization has to hold at E.

COROLLARY 3.7. Let H,, be a standard random operator satisfying a Wegner
estimate in an open interval . If E € INX and B(n, E) < ﬁ — 92bb—+n2 for some
n > (9b+ Q)d, then E € Yysa C Xsi.

Theorem 3.5 follows immediately from Corollary 3.7, since S(E) =0 = 3(n, E) =
0 for all n > 0. The same is true for Theorem 3.1, since if B(n, E) < 57 — 2242 for
some n > (9b+2)d, it follows from Corollary 3.7 that E € ¥gr and hence 5(E) = 0.

Some comments on the proof of Theorem 3.6 are in order. Its main hypothesis,
condition (38), is formulated in terms of the dynamics, but the starting hypothesis
of the bootstrap multiscale analysis, condition (35), is stated in terms of resolvents.
The first step is to reformulate condition (38) in terms of resolvents. To do so, we
used the Hilbert-Schmidt norm when we defined the moments in (1), so we can use

Plancherel Theorem to get

(39) M(n, X, T) = WiTAE||<X>%Rw(E+i%)X(Hw)xo||§dE’

for any n > 0, T > 0, and & € C° (R), where R, (z) = (H, — z)_l. Thus, if we
set

n . 2
(40) u(n, X, B) = E (|[(X)F R (B + i) X (Ho)xa;)
condition (38) in Theorem 3.6 is the same as
(41) Q = liminf gl T / Qe (n,X,E)dE < 00.
e—0t R

The proof of Theorem 3.6 requires that we obtain the finite volume condition
(35) for the bootstrap multiscale analysis out of the infinite volume condition (41).
The kernel polynomial decay estimate from [GK2] plays an important role in the
proof, as well as the Wegner estimate. We refer to [GK3] for the details.

4. Transport transition in random polymer models

Following Jitomirskaya, Schulz-Baldes and Stolz [JSBS|, we define a random
polymer model by

(42) H,=-A+V, on (*Z),

where A is the centered discrete Laplacian and the random potential V, is defined
as follows: Let 91 = (94(1),---,91(L+)) be two finite sequences of real numbers,
where Ly € N. A discrete one dimensional random polymer is constructed by
randomly juxtaposing blocks of sign + and sign —: let w = {w;; i € Z} be a
sequence of independent identically distributed random variables taking the value
+ with probability p € (0,1) and — with probability 1 — p; {V,,(z); = € Z} is
the sequence of blocks (..., ¥uy; Uy, ... ). Note that H,, is a Z-ergodic self-adjoint
random operator [JSBS].

The spectrum of a random polymer model is always pure point with exponen-
tially decaying eigenfunctions, so there is no spectral transition. Moreover, they
exhibit strong HS-dynamical localization on energy intervals not containing a dis-
crete set of special energies. (See [DBG] for the random dimer model, for random
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polymer models these results can be proven by the methods of [DSS].) Never-
theless, random polymer models may exhibit a transport transition, as we shall
see.

Random polymer models are similar to Bernoulli models (i.e., Ly = 1); they do
not satisfy a Wegner estimate as stated in Section 2, only a subexponential Wegner
estimate (i.e., with n < e’ with0 < B < 1in (29), see [CKM, Theorem 4.1]) on
appropriate intervals. The bootstrap multiscale analysis can still be performed with
this subexponential Wegner estimate [GK3, Remark 3.13], and it gives pure point
spectrum with exponentially decaying eigenfunctions, and strong HS-dynamical
localization. But Theorem 3.6 (and hence Theorems 3.1 and 3.2) is not established
for these models, since the proof relies on the polynomial decay estimates of [GK2],
which can only beat polynomial bounds obtained by using the Wegner estimate (i.e.,
n=1L"% s> 0in (29)). Nevertheless, we can say a lot about the metal-insulator
tranport transition for random polymer models.

Random polymer models may have critical energies, which we now define fol-
lowing [JSBS]. The transfer matrices associated to the blocks & at the energy
E € R ae given by:

(43) TF = l:IT(ﬁi(i) —E), where T(v)= < ;’ _01 > .

An energy E. € R is said to be critical for the random operator H,, if the matrices

T are either elliptic (i.e., TrTiE°| < 2) or equal to 1, and they commute (i.e.,

|TFe, 75| =0).
Critical energies may or may not exist. An example is given by the random

dimer model: Ly =2, 94 (¢) = £ for i = 1,2, with 0 < A. De Biévre and Germinet
[DBG] proved:

(i): If 0 < A <1 there are exactly two critical energies: +\.
(ii): If 1 < A there are no critical energies.

Dunlap, Philipps and Wu [DWP] found numerically an interesting phenome-
non of delocalization for the random dimer model at the critical energies, due to
the absence of reflection at these energies (and thus perfect transmission). Such
a phenomenon has been contested by physicists (e.g., see [LGP]). De Biévre and
Germinet [DBG] showed that energies that are not critical cannot contribute to
this delocalization, and strong dynamical localization holds outside the critical en-
ergies (if A # %, v/2). Jitomirskaya, Schulz-Baldes and Stolz [JSBS] confirmed by
a rigorous proof the numerical computations of [DWP).

The transport exponents for random polymer models are defined as in Section 2.
Note that in the lattice xq is simply the orthogonal projection on the vector §g, the
element of ¢?(Z) taking the value 1 at site 0 and the value 0 everywhere else. Thus
(1) may be rewritten as

n 2
(44) M, (n, X,8) = |[(X)F et 2(HL)8o|| -
Since the ramdom operator H,, is bounded, uniformly in w, we may remove the

restriction of X having compact support; in particular we may calculate moments
and exponents with X = 1. It follows from [JSBS, Main Theorem|, using Fatou’s
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Lemma and Jensen’s inequality, that if H, has a critical energy E. we have
1

(45) Bn,X=1)>1—-— foral n>0.
n

We can extend this result to local transport exponents, proving that critical ener-
gies lie in the metallic transport region, and hence the existence of the transport
transition.

THEOREM 4.1. Let H,, be a random polymer Hamiltonian as in (42). If E. is
a critical energy, then

1
(46) B(n,E.)>1——= forall n>0.
n

In particular, B(E.) =1 and E; € Tyr.

The proof of Theorem 4.1 is given at the end of this section.

Under an extra hypothesis on the transfer matrices Tf ¢, the bound (45) can be
improved to B(n,X =1) > 1 — ;L [JSBS, Theorem 4]; such a derivation requires
a large deviation estimate for products of transfer matrices. In this case the proof
of Theorem 4.1 yields 3(n, E.) > 1— 5.

We may summarize the results on a transport transition for random polymer
models in the following theorem

THEOREM 4.2. Let H, be a random polymer Hamiltonian as in (42). Then
Y\Zg1 is a discrete set containing the critical energies (and hence g1 # 0). More-
over, the set of critical energies is contained in Xy, so if there are critical energies
we have Xyt # 0 and there is a transport transition.

For the special case of the random dimer model, we may use the results of
[DBG] to get more detailed information.

THEOREM 4.3. Let Let H,, be a random dimer Hamiltonian i.e., H, is as in
(42) with Ly =2, 04(2) = £ for i = 1,2, with 0 < A. Then
(1): If0 < X < 1, we have a transport transition and +\ are transport mobility
edges. Moreover,

(47) Zur = {-MA}, Esi=E\Zmr if A# %,

@ mao (G} s on G ) 0=
(ii): If1 < X\, A # /2, we do not have a transport transition:

(49) Yvur =0 and Xs1=X.
(iii): If A = v/2 we have

(50) Ys1 D E\{0}.

PROOF OF THEOREM 4.1. Let E. be a critical energy, and consider open bounded
intervals I, I', with E. € I C I', § = dist(I,R\I") > 0,and & € C% (R) with X =1
on I'.

As in [JSBS, Proposition 1], it is an immediate consequence of the definition of
a critical energy that ch can be represented as two rotations in some appropriate
basis, and thus, there exists a constant C' > 0 such that, for z € C with |z — E,|
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small enough, we have || Hi:k Tz || < Cexp(Cl|z — Ec| |k —1]). Following [JSBS,
Section 6, Proof of Theorem 1], or [D'T, Section 2, Proof of Theorem 1.2], it implies
that there exists a constant C' > 0 such that, for all w € (,

2 2
(51) %/IHQ()"/?RUJ (B+iT )6 aB > Tt

We exploit this lower bound together with the kernel decay estimate of [GK2,
Theorem 2] to get a lower bound on M, (n,X,t), which is defined as in (3) but
without taking the expectation. Using Plancherel’s Theorem as in [GK3, Lemma
6.3], writing X = 1 — (1 — X), and using the inequality (a —b)? > 1a® — b?, for a,b
real, we get

(52) 1 / =2/ M, (n, X, 1) dt
2
@ - [ o el as
2

(54) > —/H(X)”ﬂRw (E+iT‘1)50H dE

T J;

2
(55) - %/H<X>”/2Rw (E+z'T*1)(1—X(Hw))5OH dE.
I
Proceeding as in [GK3, Eq. (6.34)], using [GK2, Theorem 2], we get
(56) sup sup H (E +4iT7) (1 - X(H,)) 50H2 < C(n,9).
Ecl T>0

where § = dist(I,R\I") > 0, and the finite constant C(n,d) does not depend on w.
Combining (51) and (56), we get that there exists a constant C’ > 0, depending
only on the constants of the polymer, I, I’, and X, such that, for all w € €,

1 (o9}
(57) T / e 2T M, (n, X, t) dt > C'T™?
0
for all T > 0. Taking the expectation, we obtain
(58) M(n, X,T) > C'T"
for all T > 0. It follows that B(n,I) > 1 — 1, and since I 3 E. is arbitrary,
B(n,E;) >1— . The theorem follows. O
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