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Abstract

We exhibit an intermittency phenomenon in quantum dynamics. More precisely we
derive new lower bounds for the moments of order p associated to the state 1(t) = e~ 1)
and averaged in time between 0 and 7. These lower bounds are expressed in terms of
generalized fractal dimensions D3 ,(1/(1 4 p/d)) of the measure py (where d is the space
dimension). This improves previous results, obtained in terms of Hausdorff and Packing
dimension.

1991 Mathematics Subject Classification. Primary: 81Q10, 28A80; Secondary: 35J10.
1 Introduction

A by now wide number of articles deals with the links between the quantum dynamics of wave
packet solutions of the Schrodinger equation, and the spectral properties of the associated
Hamiltonian H. Actually, during the last decade, an analysis originated by Guarneri in [14]
and refined by others [5, 7, 22, 15, 25] established that the fractal properties of the spectral
measures were relevant for the study of the spreading of wave packet. Consider a separable
Hilbert space H, an orthonormal basis {e,}nen, and a self-adjoint operator H on H. Let
1y = e *H1q) be the solution of the Schrédinger equation

{i% = Hyy
Y=g = ¢



For X =) n(. en) ey being the “position operator”, we define the time averaged moments
of order p for ¢ as

(X)) gz = %/OT | przeemy” o= %/OT S Pl enlPdt. (11)
neN

In the specific case H = ¢2(Z?), more relevant from a physical point of view, {e,} is the
canonical basis {0, },cze¢ and ((|X|P))y,r = %fOT > nezd InPl9¢(n)[2dt. Tt is now well known
from a series of results [1],[6],[7],[14],[25], in the case H = £2(Z?) (extendable to H = L2(R%))
that if dimp () is the Hausdorff dimension of the spectral measure fi,;, then

log ({1 X17) )

a (¢¥,p,d) := liminf L > dimp () p/d . (1.2)
—

T—o0 logT

More recently, in [15] a lower bound has been proven for the upper oscillations of ({| X |?))y .,

namely
log((|X17))y

ot (¢, p,d) == limsup L > dimp (uy) p/d (1.3)

T—roc0 10g T
where dimp(p,) is the “packing” dimension of fi.
However those results are certainly not optimal. Some one-dimensional quantum systems
with pure point spectrum can give rise to an almost ballistic motion [11], that is at (1, 2,1) =
2, meanwhile dimp (f1,4) = dimg(py) = 0 for pure point measures. A similar phenomenon has
been argued to hold for the random dimer model [12] [10]. In quasi-periodic models almost
ballistic motion (a™(¢,2,1) = 2) turns out to be a common phenomenon, actually a generic
phenomenon [9], even in presence of purely zero Hausdorff dimensionality of the spectral
measures [25, 9]. These examples show how far we are from a complete understanding of
“What determines the spreading of a wave packet” [21]. In this paper, we try to go one step
further in this undertanding, and also supply (Appendix B) a new enlightment concerning
the main technique used in this field for the past ten years.

We obtain new lower bounds for the growth exponents of ((|X|P))y, 7, namely (1.4)-(1.5)
below. As in (1.2)-(1.3) these bounds only rely on the fractal properties of the spectral
measure L. We point out right now that unlike the existing results, the bounds (1.4)-(1.5)
we get can be non trivial in the presence of zero dimensionality of the spectral measure
(dimp(py) = dimp(py) = 0), even in the case of pure point spectrum (see Appendix D).
Moreover in Appendix D, Theorem D.1, we show that there is no hope to improve our result
by only taking into account the fractal properties of the spectral measure encoded in its
generalized fractal dimensions fo (@)

Our result also provides a precise statement of a phenomenon discovered by recent numer-
ical computations in some quantum models for quasicrystals [26, 29, 32]; this phenomenon
has been called “Intermittency”. Namely, it has been suggested by physicists that the growth
exponents ot (1, p, d) should grow faster than linearly in p/d as proposed in (1.2) and (1.3);
one should observe a more complex law for the behaviour of (¢, p, d) in the variable p/d:
a*(,p,d) = BF(¢,p/d)p/d, where B (+p, p/d) are non decreasing functions of p/d (and of
course non smaller than dimy and dimp).

These recent numerical investigations emphasized, in this phenomenon of intermittency,
the role of more refined fractal quantities, the so-called “g-th generalized fractal dimensions”



Di/) (g). The lower bounds (1.4)-(1.5) that we establish for ({(|X|?)), 1 actually appear to be
“intermittent” lower bounds, providing thus a rigourous statement concerning intermittency
in quantum dynamics. More precisely, when Df(q) is non constant for ¢ € (0, 1), these lower
bounds grow faster than linearly in p/d. After Theorem 2.1 we discuss the application of
our result to an Hamiltonian constructed with Julia matrices with self-similar spectra [4][16].
For “real” Schrodinger operators, good candidates would be operators on £2(N) or £2(Z) with
sparse or quasiperiodic (e.g. generated by substitution sequences) potential. But a careful
analysis of the links between spectral properties and behaviour of the eigenfunctions would
then be required; an analysis that goes, for instance, beyond the scope of [20] .

Our main result (Theorem 2.1) holds for any self-adjoint operators H, and for any initial
state 1 such that the associated spectral measure dyu,, satisfies

+
(H) Dy, (s) <+oo for any s € (0,1).

The result reads then as follows:

o ) 2 Dy, (57 ) vl (1.4
and
@ ) > Df, (1) wld (1.5

where D, (¢) and D;;p(q) are the lower and upper “g-th generalized fractal dimensions” (see
Definition 2.2). In Appendix C we discuss the validity of Hypothesis (H), which, we note,
holds for compactly supported measures. In particular Theorem 2.1 applies to the examples
where the intermittency phenomenon has been argued to hold.

To achieve this we first derive a p/d-dependent lower bound L (T') for ({|X|P))y r (Theo-
rem 3.1). Then we establish via Theorem 4.2 the connection between L, (T') and the general-
ized fractal dimensions, by adjusting for each single T" the “thin” part of u, that supplies the
faster dynamical travel. Concerning the connection between L (T") and fo -, (q) we moreover
obtain a kind of optimality, in the sense that this quantity L. (T) that minors ((|X|P))y 1 is
shown to have its growth exponents exactly equal to wa(l /(1+p/d))p/d.

We point out that Dljfw (1/(1+ p/d)) are increasing functions of p/d, and are respectively
not smaller than dimg(sy) and dimp(uy) (for all p/d > 0). Therefore (1.4)-(1.5) do improve
the bounds (1.2) and (1.3) above.

These new bounds are a consequence of a double improvement of the approaches of
Guarneri-Combes-Last (G-C-L) [7, 25] and of Barbaroux-Tcheremchantsev (BT) [5]. The
first improvement is due, after a decompostion ¥ = ¢ 4+ x, ¢ L x, to a better control of the
key quantity

ByTN) = 1 [T 3 e en)Phie/T)at

O <N

< B,(T,N)+ %Re /O h D (e g en) ey, en)h(t/T)dt,  (1.6)
In|<N

and more particulary of the last term (the crossed term). We stress right now that this better
control of the crossed term is essential, meaning that using the former available estimates



[25, 5] will not lead to the right fractal dimensions D -, (1/(14p)), as illustrated in Appendix B.

Here h(z) is some positive function in C§°([0, 1]) such that fol h(z)dz = 1.
Afterwards, and this is Theorem 3.1, one is able to obtain a constant C(¢, p, h) > 0, such
that for all T > 0,

24283
WX pr > CbpLG(T), with Ly(T) = sug{ e, 2t }
PEHy

lel2 (Upp(T))°

where H, is the cyclic subspace spanned by 1 and H,

UpslT) = [ duol@)di (1) R(T (e = 1),

and R is some bounded fast decaying function defined by (3.5) in Section 3 (one should think
to R(w) as to the gaussian e~*°/4). Thus, as in [5, 15], one can “choose”, for each T, a T-
dependent vector ¢ in the decomposition 1) = ¢+, that contains enough spectral information
to approximate the supremum in Ly (7). The second improvement then consists in the way
one chooses this particular vector ¢. We show (Theorem 4.1) that a judicious choice enables
one to connect, up to a logarithmic factor, the quantity Ly (T') to the integral

/d

1 _ _ a1y — P4
b (g ) = [ o) [ 715

that defines the generalized fractal exponents Dip (1/(1+p/d)).

Our method also applies to the previous approaches (G-C-L) and (BT), where the crossed
term in (1.6) wasn’t treated well. It respectively yields, as stated in Appendix B, the fractal
dimensions Dip (1+p8)/(1+2p)) and Dip ((14+2B)/(1+3p)). Since the functions Dib (q) are
non increasing functions of g, our Theorem 2.1 gives a better lower bound. This means that
a better estimate of the crossed term in (1.6) does provide an improvement (Theorem B.3).

Finally, using extra assumptions on the decay of the generalized eigenfunctions u(n, z) of
H (in the spirit of [21] [23]), it is possible to improve the above bounds. In particular, suppose
that there exists a constant C' such that for py a.e.z, 32,y [u(n, z)|?> < CN? holds, then

at (2, p,d) > Dljfw(l — p/d) (Theorem 4.3).

The results of the present article together with a flavor of the proof of Theorem 4.1 can
be found in the short note [2]. In [3] we deal with the continuous case.

While diffusing our short announcement [2], a related but weaker result by Guarneri and
Schulz-Baldes was also released [17]. They obtained their result independently of us, using a
quite different method. In particular they need a Large Deviation Theorem, a tool that does
not enter in our proof. This enables us to obtain a more general result.

The paper is organized as follows: in Section 2 we define the generalized fractal dimensions
Dﬁ(q) and state our main result, i.e. Theorem 2.1. The next two sections are devoted to
its proof. In Section 3 we derive an abstract lower bound for ({|X|?))y r, that is Ly(T)
(Theorem 3.1), and in Section 4 we relate this quantity Ly (T") to the generalized fractal



dimensions we defined (Theorems 4.1 and 4.2). Most of the results of Section 4 are proven
under the assumption (H): Dip (s) < 4+oo for any s € (0,1).

In Appendix A we give the proof of statements ii) and iii) of Proposition 2.1.

In Appendix B we provide the analog of Theorems 4.1 and 4.2, for two others lower bounds
(corresponding to the former approaches), and discuss their relations to Ly (T').

In Appendix C we give a sufficient condition for the Hypothesis (H) to hold which can be
useful in applications. In particular, (H) is true for any measure with compact support.
Finally, in Appendix D we give a simple example of pure point probability measure x on [0, 1]
which has strictly positive fractal dimensions fo (q) for some values of ¢ € (0,1). And then
we derive in Theorem D.1 an example of an Hamiltonian H for which Theorem 2.1 is optimal.

Acknowledgements: F.G. is grateful to S. De Bievre, S. Jitomirskaya and H. Schulz-Baldes
for enjoyable and stimulating discussions on this subject matter. F.G. acknowledges the
hospitality of the UCI, where part of this work has been done. The authors are also grateful
to the referee for his remarks and suggestions.

2 Definition of fractal dimensions and main result

Definition 2.1. The Hausdorff and packing dimensions of a measure u are respectively de-
fined as (e.g. [15] and ref. therein)

dimpr(p) = p —esssupy, (x) and dimp(u) = p — esssup 7y, (x) (2.1)
x€R x€ER

where

log (u(lz —e,z+el)) . 7Jr(m):hmsuplog(u([fv—e:’,f6+<€]))

() — lim inf
Y (@) 1 log € es0 loge

)

for x €suppp, and v, (z) = fy;f(a:) = +o00 for x €suppu. The essential supremum is defined
in the following way: take a set of full p-measure and compute the supremum over this set,
and then take the infimum over all these sets of full y-measure.

Remark 2.1. Note that the above definitions, while different from the “usual” ones ([28],
[31]), are indeed equivalent to them: see e.g. [13] [15].

Definition 2.2. Generalized fractal dimensions of a measure [19],[8].
Let p be a (positive) Borelian probability measure. Let q € (—o0,1) and € € (0,1). We
consider the following function with values in [1, 00]

Iae)= [ ez + e duo)
Suppp

The lower and upper generalized fractal dimensions of u are respectively defined as

1 log I 1 log I
D, (q) = lim inf —&2#\9 ) u(2,) and D}(q) = —— limsup 089, ) 'u(q7€).
1—q &0 —loge B 1—q -0 —loge

(2.2)

with the understanding that both are oo if, for some € > 0, I, takes the value +oo.



Remark 2.2.

i) For our purpose, it is sufficient to discuss the case ¢ € (—00,1) (see e.g. [8] for the general
case).

ii) There exists actually a wide number of “generalized fractal dimensions”. For example,
they can be defined with the help of the so-called “singularity spectrum function” f, of the
measure u ([18], [27]), or as a solution of an implicit equation ([18, Formula 2.8], [27]). The
resulting dimensions coincide with each other in certain very specific cases, like e.g. Cookie
Cutter measures in R [27].

In order to state our results we also define the following integrals that could be considered
as approximations of the quantities I,,(g,€). The function R is a bounded even function with
fast decay properties at +00, and will be precisely defined in (3.5) below.

Kiao)= [ duta) ([ autrice - y)/a-))ql ,

In Lemma 4.3 we shall prove that for any measure p verifying the condition (H) of our theorem,
taking K,(q,€) in (2.2) instead of I,(q, €) leads to the same values for the generalized fractal
dimensions.

We review below some properties of the fractal dimension numbers Dljf (¢) that will be of
interest for us.

Proposition 2.1. Let u be a Borel probability measure.

i) D, (q) and D, (q) are non increasing functions of ¢ € (—o0, 1).

i4) For all ¢ € (—o0,1), D, (q) > dimu(u) .

ii) For all ¢ € (—00,1), D;f(q) > dimp ().

i) If p has a bounded support, then for all g € (0,1), 0 < D, (q) < D;f(q) <1

Proof of Proposition 2.1.

Statement i) is already known (see e.g. [8]). This a straightforward consequence of concave
and convex Jensen inequalities. For the proof of ii), iii) see Appendix A. The statement iv)
follows from Corollary C.1. Note that iv) does not necessarily hold any more if one lets g vary
in (—o0,1) - See Appendix D. O

From now on, each time we will refer to the exponent 3 it should be understood that 8 = p
if H is a general separable Hilbert space with basis {e, }nen, and S = p/d in the specific case
H = £2(7?) equipped with its canonical basis {6y },c74-

Our main result is the following one:

Theorem 2.1. Let H be a self-adjoint operator on a separable Hilbert space H, and let 1 be
a vector in H, |||l = 1. Assume that the spectral measure p,; associated to 1 is such that

(H) Dip (s) < +oo for any s € (0,1).
Then for ((|X|P))y,r defined by (1.1) and with 5 as described just above, the following holds:

. Log{((|XIP))yr - 1
1 f—————2- > 3D e
Too0 logT 2 BDy, 1+8)°



and log((| X|P)) 1
: 08 $,T +
1 — "7 > 3D — .
el logT ‘—ﬁ’%(1+ﬂ)

Remark 2.3.

i) As a consequence of i)-iii) of Proposition 2.1, this result does improve previous known
bounds of [25], [1],[15].

ii) As we show in Appendix D, Theorem D.1, for any 5 = p/d > 0 and any 6 > 0 there exist a
bounded self-adjoint operator H and a vector 9 such that limy_,o log({| X [?))y,7/logT =0,

but at the same time Dip (ﬁ - 5) > 0. Therefore, one cannot hope to obtain a general
(i.e. without additional assumptions on j,, or on generalized eigenfunctions) lower bound of

the form BD (¢(B)) with some g(8) < 115, e.g. like Dif (1—p).

Proof of Theorem 2.1.
The proof of Theorem 2.1 is the combination of Theorem 3.1 and Theorem 4.2 which are
proved respectively in Sections 3 and 4. O

We now discuss a model of Jacobi matrices, the Julia matrices. In this case, the upper
bound derived in [4] together with Theorem 2.1 above enable one to prove for small p that
the increasing exponents of the moments of order p are entirely controlled by the generalized
fractal dimensions.

Julia matrices: There exists a class of models for which non trivial (i.e. non ballistic) upper
bounds for the moments of order p are derived in terms of generalized fractal dimensions: the
Julia matrices. They are constructed by considering polynomials, disjoint Iterated Function
Systems (IFS), giving rise to a real hyperbolic Julia set J (see e.g. [4] [16] and references
therein for details).

Given such an IFS, one considers the balanced measure u of maximal entropy on J, and
then constructs an Hamiltonian H (H corresponds to the Jacobi matrix associated to p) on
?2(N) as follows.

Let P,, n > 0, denote the orthogonal and normalized polynomials associated to u. The
family (P,)nen forms a Hilbert basis in L2(R, 1) and satisfies a three terms recurrence relation
EP,(E) = tp41Pot1(E)+vnPo(E) +tnPp_1(E), n > 0, where v, € R and ¢,, > 0 are bounded
sequences, and P_; = 0. Therefore the isomorphism of L?(R, 1) onto £2(N) associated with
the basis (P, )nen carries the operator of multiplication by E in L2(RR, 1) into the self-adjoint
finite difference operator H defined on ¢?(N) by

e 1)+ tap(n— 1) + vap(n) 0> 1
me‘{ukn+mwm n=0

Then u is the spectral measure of H associated to the state §p located at the origin. For
this model, the upper and lower fractal dimensions fo (q) are equal (:=D,(q)), and continuous
for g € (0,1); furthermore, we have D,(1/(1+p)) = D,(1 —p) + O(p?) (see [4] and references
therein).

It is established in [4] that there exists a critical value p. > 2 such that for all p € (0, p.)

(2.3)

a+(607p7 1) < D,u(l _p)



Therefore, putting together Theorem 2.1 and Theorem 1 of [4], we get, for the exponents
of any moments of order p € (0,p.) and for the initial state dy, that

1
-Dp <m) < ai(éovpv 1) < Dp.(]- _p) .

and thus for small p > 0,
Du(1—p) +O(p%) < a*(b0,p,1) < Dy(1-p) .

This is the first model of Schrédinger-like operator treated rigorously for which such bounds
are derived.

If D, (q) would be known to be strictly decreasing in some interval (0,4), one would get
intermittency for ((|X|P))y(T"), with small p. However, to our best knowledge, this fact is only
emphasized by numerics on the generalized fractal dimension (see e.g. [26]), and no rigourous

results are provided.
O

3 A general lower bound

This section can be regarded as the first part of the proof of our main result Theorem 2.1. Let
H be a self-adjoint operator in Hilbert space H, and {e,} an orthonormal basis in H labelled
by n € N or by n € Z%. Let 1 be some vector in  such that ||¢|| = 1. We are interested in
lower bounds for the moments of the abstract position operator associated to the basis {e, },

defined as .
IXE () =Y [nfPlle e, en) . (3.1)

In particular, if % = £2(Z%), one can take the canonical basis e,(k) = 6, n,k € Z% to
obtain the moments of the usual position operator. Our results can also be extended to the
case H = L2(R?%) [3] and

| XT3 (t) = /Rd 2Pl (t, ) Pdz,  (t,z) = (e T)(2).

It can be done using the Theorem 3.2 in the same manner as in [5] (see Corollary 2.4 and
Theorem 2.5 of [5], see also [25]). However, for the sake of simplicity, we shall consider in this
paper only | X|P given by (3.1).

We derive a lower bound for the time averaged moments of position operator in term of
an abstract quantity in the spirit of [5], namely

_ _ e, )P
Li/J(T) = sup {LI/J(907T)7 pE %1/)7 <'¢7 90) 7é 0} ) L¢(¢7T) - ”‘10”2U<p¢(T)5 (3'2)

where H,, is the cyclic subspace spanned by ) and H. The exponent § = p if n € N and
B =p/dif n € Z%. Notice that if ¢ = xq(H)v, where Q is a Borel set, then Ly(p, T') reads as
P

1/)(7 ’ ) |

7U<p,¢ T (3.3)



The quantity Uy, (T) is defined as follows.

T) = /R /R () Ay (W) R((z — 9)T), (3.4)

where R(w) is a bounded and fast decaying function defined in (3.5) below. In the sequel, we
shall note (¢ playing the role of 1/T),

¥ (w.e) = [ dus()R (ﬂ) -

So that U, y(T) = [ due(z)b®(z,1/T). The quantity Uy, (T) is crucial since one may
consider that it codes the determmatmg part of the spectral informations that are involved
in the dynamical behaviour of the considered quantum system. The quantity in (3.4) should
be compared to other quantities such as

/ dpsy () dpy (y) / / dpr () dpaes (y)e~ @0 T4
lz—y|<1/T

which already appear, in the limit ¢ = T~! — 0, as key quantities in order to discuss the
nature of the spectrum [24],[25],[11],[5].

The main result of this section is the following.

Theorem 3.1. Let H be a self-adjoint operator on H and let ¢ be a vector in H, ||¢| = 1.
Let {en} be some orthonormal basis in H and

(X7 / S Pl )Pt

Let h € C§°([0,1]) be any positive function such that fol h(z)dz =1 and define

_[1 if lw| <1
B0 = e i ol o1 (3:5)
where h stands for the Fourier transform of h. Then, for all p > 0 and with Ly(T) defined in
(8.2), there exists a constant C(,p, h) such that for allT >0

{IX[))y(T) = C(9,p, h) Ly(T) -

Remark 3.1. We point out that h seems to be the necessary trick to take into account
averaging on time between [0, 7] only, instead of [T, T]. This trick actually allows one to
deal with the crossed term in (1.6) and to recover a function R with fast decay at +oo.
Replacing h by the usual gaussian e~*"/4 in (3.15) below and thus in (3.6) will lead to the
same result but with | X |ﬁ (t) averaged over [T, T.



As it is now well-known [14], [7], [25], a key point in the proof of lower bounds for
((|X[7))4(T) is a good control on the behaviour of the wave packet inside a ball of radius
N, namely

Byt N) =7 [ 3 lfe . ea) Pt/ Tt (3.6)

In|<N

To that end, we shall need Theorem 3.2 below, which is a generalization of Theorem 2.1 in
[5]. In order to state it we first recall well-known facts involving the spectral theorem for the
self-adjoint operator H and the choosen vector . (see e.g. [30] and ref. therein).

Namely, there exists a unitary map Wy, from the cyclic subspace Hy; into the space L2(R,duy)
such that Wy(y) = 1 and Wy(e %) = e~ We shall denote by P, the orthogonal
projection on Hy. The map Wy, has a kernel u(n,z) defined by u(n,-) = Wy(Pyen)(-), so
that

(M en) = [ &l Dy (a), (3.7

and more generally, for any vector £ € H, one has
(Putuen) = [ Wy (Pot) @l 2)ng(z). 8)

In the case H = ¢2(Z?) and e, (k) = Onk, for each fixed z € R the vector (u(n, x),cz¢) may be
seen as a generalized eigenfunction of H (i.e. in a distributional sense). This observation is
of interest for some applications ([24] and Theorem 4.3 below)

The expansions (3.7)-(3.8) are of course also possible with any vector ¢ € H and corre-
sponding kernel v(n,y) = Wy (Pyen)(y) (actually if ¢ = f(H)yp, with f € L*(R,du,), then
one checks that v(n,y) = f(y)u(n,y)).

We are now ready to formulate Theorem 3.2.

Theorem 3.2. Let h(z) be some function in LX(R), H a self-adjoint operator acting on H
and A o Hilbert-Schmidt operator in H. For any couple of vectors 1, from H define the
quantity

(h) L[ am —am
D) = / (Ae~itH 5 o=tHy\ (¢ /T dt.

—0o0

0@ = [ [ dua@ans i@ - w1
The following estimate holds:
1
D) < l1Alls (VL)

where || A||2 is the Hilbert-Schmidt norm of A.
In the special case A =73, < n(: en)en, one has [|Al2 < CN9%2, and therefore

N

p® = |E [T it —#Hy\h(t/T)dt| < CNY? (U (T
| %d’( )| T Z (e ©, €n)(en, e Y)h(t/T)dt| < ¢,¢( )
% Inl<N

10



Here d = 1 if one considers the abstract position operator associated with the base {e,} labelled
byn €N, and d > 1 in the case H = £2(Z?) equipped with the canonical basis e, = &y.

Proof of Theorem 3.2.
Since A is Hilbert-Schmidt, there exist two orthonormal bases { fy, }nen and {gn }nen of H and

a monotonely decreasing sequence {Ey, }nen, En > 0, such that > 2 ; E2=| A”2 < 400 and
A= Zn: n{*> fn)gn. Therefore,

D, /m§§M€M%M@ﬂ%%Mwna (3.9)
n=1

Then (3.7) reads as
(€, ) = | duglaleulna) (3.10)
R
where u(n) = W,(P,f,) € L?(R,dp,). The similar formula holds for 4 with v(n) =
Wy(Pygn) € L?(R,dpy ). One obtains from (3.9) -(3.10) that

P (T / / dp(2)dpy (1)h((z — y)T)S(z, y), (3.11)

where

y) =3 Byuln, 2)o(n,y).

n=1

The sum converges in L?(R?, u,, x py)- Applying the Cauchy-Schwarz inequality to (3.11),
one gets

DI < ULUT)IS12 2 st (3.12)

One can easily see that

o0
||S||%2(R2,dwxd%) = Z Ey Exankbuk,
n,k=1

where
Unk = / dpg(@)u(k, z)u(n, ) = (Wo(Ppfi), Wo(Pofo)2®au,) = (Pofis fa)a ,  (3.13)
where we used an analog of (3.8), and in the same manner

bk = (Pygk, Ppgn)n = (9ks Py gn) -

We have also used the fact that both P, and Py are orthogonal projections. By Parseval
equality,

o0 o0
> lank® = 1P fell®s Y 1bnkl* = | Pygnll*
n=1 k=1

11



Therefore, as || fx|| = ||gn|| = 1 for all k, n,

[e o]

oo oo 2
1S 2z gyt < 3 EENPofilP S B2 Psgall® < <ZE2) — Al (314)
n=1

k=1 n=1

The first statement of the Theorem follows from (3.12) and (3.14). The proof of the second
part is essentially the same. The only difference is that in the case # = £2(Z%) the sums are
taken over n € Z¢ : |n| < N. In particular, the estimate (3.14) reads as

112 e iy < S IPoerll? 3 [ Pyenll? < C N2
|k|<N [n|<N

This ends the proof. O

One should stress that the proof we presented here is simpler than the one of Theorem 2.1 in
[5], because we do not use the product space H®%H. In the case 1 = ¢ and h(z) = exp(—2z2/4)
the result of Theorem 3.2 is equivalent to that of Theorem 2.1 in [5].

Proof of Theorem 3.1. Pick a positive function h(z) € C§°([0, 1]) such that fo z)dz = 1.

The role of h is to supply a fast decaying function |h(w)|2. Note that one trivially has, for
any 2 € [0,1], h(z) < ||h]loX[0,1](2)- Then one verifies that

(X1 > e [ 3 Il enl h(t/T)T_”hHOO<||¢||2 B¢<T,N>),

(3.15)
with By (T, N) defined line (3.6). As usual, one needs a control of this quantity By (T, N)
which represents the behaviour of the wave packet in a ball of radius N. Decompose the
vector ¢ as ¢ + x, with (p, x) =0 and ¢ # 0 (one should think to ¢ = xq(H)v¥). Thus

By(T,N) = B,(T,N)+ By(T,N) + = Re / S (e M, ) e X, enph(t/T)dt,
|n|<N
= —B,(T,N) + By(T,N) + = Re / S (e, en) e G, ey h(t/T)dt
|n|<N

Then, taking into account that 1/T [ h(t/T)dt = 1 and h(z) > 0, we have By(T,N) <
I = 4] = l]%- Let A = 5}, <x (- enden. Then

By(T,N) <[] = l¢|l* + 2ReD{") (T, N),

where Dg?p (T, N) was defined in the Theorem 3.2. The second statement of this Theorem
gives immediately

By(T,N) < [[$]* - |ll* + CN*? (US)(T))?, (3.16)

where, as in Theorem 3.2,
00 = [ [ dugle)is @il )P

12



As |h(w)| < 1 for all w and by definition (3.5) of R, we clearly have R(w) > |h(w)|? for all w.
Therefore U (T) < Uy4(T), and the estimate (3.16) is valid with U, (T) defined by (3.4),
that is with the function R instead of |h|?.

We are now in position to finish the proof of Theoxl‘em 3.1. The basic strategy is standard:
let N be the largest integer such that CN¥2U,, ,(T)2> < ||¢||?/2, it yields:

By(T, N) < )2 — 1€ 3.17
w(T, N) < [|9] 5 (3.17)
The inequalities (3.17) and (3.15) yield with some positive constant C(¢, p, h):

(XPor > D LD o Lo, B=2  (318)
T Upw(T)P d

One recovers Ly (o, T) as given Line (3.3). It is this latter lower bound that will be used in

the proof of the lower bound in Theorem 4.1. However, in the more general case where ¢ is

any function of H with (1, ¢) # 0, one gets the bound with

)
Lol D) = (2D, o)

Indeed take such a ¢, and then define as in [5] @ = ({¢,%)||¢|| 2)¢; one thus checks that if
X =% — @, then (@, x) = 0 and one is able to apply the result line (3.3) to ¢ and @. Taking
into account that ] = |(¢,) o]l and that Up(T) = [(@, ) Pllp] U (T), one finds
the announced expression (3.19). To optimize the lower bound, we should take the supremum
of Ly(¢,T) for a given T over all possible ¢. One can show in the same manner as in [5],
Lemma 3.1, that it is sufficient to take ¢ only from the cyclic subspace H,. This gives us
Ly(T) defined line (3.2). O

(3.19)

4 Towards the fractal dimensions

This section deals with the connection between the dynamic quantity L (7T) introduced in
the previous section, and the fractal dimensions defined in Section 2, called the generalized
fractal dimensions.

We shall prove

Theorem 4.1. Let H be a self-adjoint operator on H, and let ¢ be a vector in H, |[¢|y = 1.
Assume (H), namely the spectral measure py, associated to v is such that

Dip(s) < +oo for any s € (0,1).

Then, for all B > 0, there exists a constant Cy > 0 such that, for all € > 0:

Ci 1 1+8 . 1 148
e () sk (mge) e

where

Koo (115¢) = [ A ([ amstoric-70)) i

13



This will actually imply

Theorem 4.2. Under the same hypothesis (H) as previously, one has
.. log Ly(T) _ 1 . log Ly (T') 1
1 f————= =D — 1 = LAY ) S —
oo logT Dy, 1+8)° l;Il_)S;l)p logT ADu, 1+

Remark 4.1. i) We point out that the first inequality in (4.1), that is the lower bound on
Ly(e71), is sufficient to prove our main result Theorem 2.1. However the right side of (4.1),
that is the upper bound, is of interest too. In particular it says that once one derived the
lower bound L (T'), one cannot hope a better result than the one we stated. We shall also
take advantage of the right part in (4.1) in Appendix B, Theorem B.3.

ii) Note that the proof of the right-hand-side inequality in (4.1), that is the upper bound, is
true for any measures fi,.

iii) In Appendix C we show that (H) holds for all measures verifying the condition

/ |z|*dpsy (z) < 400 for any A > 0. (4.2)
R

This is true, in particular, if 41, has a compact support. Moreover, if (4.2) holds, Dip (s) €
[0,1] for any s € (0,1).

We start by providing a proof for Theorem 4.1. Throughout this section, integrations
must be systematically understood on the support of the measure p,, or p, we consider.

Proof of the upper bound in Theorem 4.1.

The upper bound of (4.1) in Theorem 4.1 will be proved, if taking any function f €
L2(R,duy), one shows

Ly(f(Hyp,e ") < Ky (ﬁ) Tl ( / du«p(x)b@)(x,e)i@)Hﬂ, (4.3)

where b(f)(z,e) = [duy(y)R((z — y)/e). This result will follow from Cauchy-Schwarz and
Hélder Inequalities. Pick ¢ = f(H)y, with f € L*(R, duy ). Therefore

dpp(z) = | £(2)2dpy(z) and (p, ) = / duy(z)f ().

Remember also that U, (T) = [ duy(z)b)(z,€). Then, rewriting Ly ((f(H)w,e!) as given
in (3.2) one gets :

S dpsy (G
(f dup (IR ) (f dpa () £0) D (x5, )
One starts with a Cauchy-Schwarz inequality applied to the numerator, and to the functions
b(R) (.’E,E)2(1_—fﬁ) and f(x)b(R)(m,a)z’(l%ﬁ). It yields:
2+28

Ly(f(H)p,e™") = (4.4)

1+8

< ([ a0 s)l‘fﬂ)lw (f amseor®eey i) @)

1 1448 5 1+
= Ky, <m’6) (/ dM¢(X)b(R)(X,5) 1-[7-6 |f(x)|2) .

14
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An Holder inequality applied to the last term, and with the coefficients p = 1 + 8 and
p' = (14 B)/B, leads to:

(/ dﬂw(X)b(R) (x, 5)%|f(x)|2) 148
- </d“¢(x)(|f(x)|2)liﬁ (|f(x)|2b(R)(x,a))%)l+B
(/ duw(x)|f(x)|2) (/ dpaep (%) £(x) 2D (x, 6))5. "

One thus recovers exactly the denominator term, and (4.3) holds. O

INA

Remark 4.2.

We stress the very strong link that comes out between Ly (e ') and the integral K, , (¢, ) with
the particular value ¢ = 1/(1 + ). The same appears to hold with the other lower bounds
Li(T) and Ly(T) defined in Appendix B and coming from the former approaches (G-C-L
and BT). This shows how relevant are the fractal dimensions Df(q) with regards to the time
behaviour of the quantities that have been studied for many years in quantum dynamics.

We now turn to the second and main part of Theorem 4.1, that is the lower bound. Our
basic strategy to get the lower bound in (4.1) is to estimate the quantity Ly(p,T') in (3.19),
with a vector ¢ = xq()(H)¥. And Q(r) will be a “thin” set of the form Q(r) = {z €
Supppy | e"tA/N < p(B) (z, ) < €7}, but which supports, roughly speaking, a significant part
of the mass of the integral K,,(1/(1+8),¢). The constant A(q) is fixed by Lemma 4.1 below.
The integer N will stand for the integer part of logT. Before going on with the proof of
Theorem 4.1, we need the two following lemmas:

Lemma 4.1. Let q € (0,1), and suppose that (H) holds for pi, i.e. Dip(s) < 400 for any
s € (0,1). Define b(z,e) = [duy(x)g((z — y)e™'), with g(w) = x(—1,1](w) or R(w). Then
there exist A = A(q) and o(q) > 0 such that for all € € (0, o)

/ b(z, ) dpuy () < . (4.7)
{z€suppp | b(z,e)<e4}

Lemma 4.2. Let py, q and A = A(q) be as in the previous lemma. Let N > 0 be an
integer. Then, for b(z,e) defined as in Lemma 4.1, there exists an ro and a set Q(rg) = {z €
supppy | €0TAN < b(z,€) < €™} such that, for all € small enough

q-1 1 q-1
/ Y@ @) 2 o [ 4@ duyo)

Lemma 4.2 is the key lemma to get Theorem 4.1, since it is this lemma that supplies the
set 2(r), and so the vector ¢ = xq(,)(H )%, that is needed to prove Theorem 4.1. Lemma 4.1
will not enter explicitely in the proof of Theorem 4.1 but is an important ingredient that we
shall use twice: once while proving Lemma 4.2 and then in Lemma 4.3.

15



Proof of the lower bound in Theorem 4.1.

Let N be the integer part of —loge. For a sake of simplicity we shall use N = —loge
(rather than the integer part). Take A as in Lemma 4.1 and Lemma 4.2. Here ¢ =1/(1+ ),
and thus ¢ — 1 = —3/(1 + ). For fixed ¢, we choose ¢ = xq(q)(H)¢ with ro given by
Lemma 4.2. Thus, from the definition of Q(rg) we obtain

r0)

Usle ™ = [ o @) < ()

Therefore, using the expression (4.4) of Ly (f(H)y,e™ ") with f = XQ(ro)> One has

1+8
R ey LT

Ly(e ) > >eN bV (x,e) B dpy (x 4.8
TP( ) ETOﬂHdJ(Q(TO))B (ro) (z,¢) ¢( ) (4.8)

—AB _ 1+ C 1 1+5

e (R) o8 __ Y9 e (L

(_2log6)1+ﬂ </b (33,6) dl”"‘b(x) |10g€|1+6 Hap 1+IB76 )
where in the last inequality we used Lemma 4.2 and N = —loge. This holds for £ small
enough. O

Remark that the fact that ro disappears in the relation (4.8) is crucial. It is of course
related to the particular value ¢ = 1/(1+ ) of the fractal dimension that enters into account.
This is the place where the deep link between L, (T") and fo ,(1/(1+ B)) shows up.

We are left with the proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1.
For any A > 0,e > 0 define

B(A,¢) = {w € suppp | b(z,¢) < e},

Let 0 < s < g < 1. Asb(z,e) > p([z — &,z + €]) whatever is b(z, ), we can estimate:
[ s@ertant = [ b)) dut
B(A,&‘) B(A7€)
< ghlas) / b(z,e)"du(x)
B(Ae)

< A9 / u(lz — &,z + ) 'du(x)
B(Ae)
< sA(q_s)Ip(s,s). (4.9)

Let us take, for example, s = ¢/2. As Djf(s) < 4oo for any s > 0, for € small enough one has

1\ (P (1))
Iﬂ(sag) S (g) .
Taking in (4.9) A = (¢ —s)"'((D} (s) + 1)(1 — ) + 1), we obtain the result of the Lemma.

O
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Proof of Lemma 4.2.

To alleviate the notations, denote B4 = {z € supppu, | b(z,€) < e} and also BA = {z €
supppy | b(z,€) > e4}. Then, using the bound of Lemma 4.1, one has for & small enough

[Ha o @) = [ oo dn@+ [ b ()
< /]BAb(x,s)q_ldu¢(x)+s.

Remark that one always has b(z,e) < 1 (since R(w) < 1). Thus one can divide the remaining
set B4 into N parts: Q(kA/N) = {z € supppy | eFTVAN < b(z,e) < AN}, with k =
0,1,---,N — 1. At least one of these N sets Q(kA/N) gives rise to an integral bigger than
1/N times the integral over the whole set B4. And so are picked kg, ro = Akg/N, and thus
the set Q(rg) of the Lemma.

To end the proof, remark that [ b(z,e)? 'duy(z) > 1, since ¢ < 1. Therefore, for € < 1/2,
one gets

v

/Q " b(z, €)duy () % ( / bz, €)1 dpag () — 6)

% / b(z,€)?  duy(z).

v

O

We now turn to the proof of Theorem 4.2, which is actually a consequence of Theorem 4.1
and of the following Lemma 4.3 that relates the integrals K, ,(q,¢) to the integrals I,,(q,€)
that enter into account in the definition of the generalized fractal dimension fo ¢(q). More
precisely, Lemma 4.3 says that, under Assumption (H) on uy, both K, (g,¢) and I,,,(q,¢)
have the same growth exponents D:—[ " (q). This is of course because of the fast decay properties
of the function R we have chosen (via the choice of h € C§°([0,1])).

Lemma 4.3. Let g € (0,1). Suppose that (H) holds for j;. Then for all v € (0,1)

1 —v
gl (0:617") < Ky (a,6) < Iy (a,6), (4.10)

where the left inequality holds for € small enough (e < e(v)). As a consequence

log K, (q,
=D, (q) and lim sup w =D}

= . (411
1—q &0 —loge Hap —q es0 —loge u¢(Q) ( )

Remark 4.3. We strongly believe that (4.11) holds in full generality for any .

Proof of Lemma 4.3.

Throughout this proof we shall denote B(z,e) = [z — €,z + €]. One has

@9 = [ B nsto) = [ame) ([ xi2 (570 )
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Since, by (3.5), x{-1,11(w) < R(w), and ¢ — 1 < 0, one has K, ,(q,¢) < I,,(g,€). So we need
to get the lower bound of (4.10). First notice that

0ae) = [amwr(T2Y)

= fo L wmer(T) [, anwr ()

< uy(B(z,e'™))+ sup R(w), E

] >e—

where we used R(w) < 1. Let R(z) = SUP|y|>» F2(w). Define also
AP(e) = {o € supppy | ps(Blz,e' ) > R(e™)} and AP (e) = (40 ()" N supppy.

It is clear that for any z € AS7(¢), b(R)(z,e) < 2y (B(x,£7)).
Thus, with these notations, one has

Kiu(@e) = [dm@p®@or > [ duy@p®aer

A% ()

q—1

1 Wy g
- ﬁ(lu«p(q’sl )—/A(R)()du¢(:c)u¢(3(x,sl )? 1)-

Since R(w) decays at +oo faster than any inverse power, for € small enough, that is ¢ < e(v),
one has R(e V) < €4, where A is the number from Lemma 4.1.
Hence, with A, (¢) = {z € suppuy | py(B(z,e!77)) < e},

279K, (0,6) > I, (g, 7") — /A()dw(w)w(B(fv,fs‘l‘”))q‘1 (4.12)
—v —v 1 —v
> Ipy(a,e"") =" > Slu(ge ), (4.13)

if in addition '™ < 1/2 (since I,,(q,e'™") > 1). We have used Lemma 4.1 with &/ = '~
and with the function g(w) = x|_1,1j(w). This ends the proof of the first part. The conclusion
of the lemma then follows: (4.13) yields

log Ky (9:) _ log (2721, (9,6™™))
—loge —logel—v

(1_1/)7

for £ small enough. Then take respectively the liminf and lim sup and notice that the result

is valid for all ¥ > 0 as small as one wants. O
Proof of Theorem 4.2.
Theorem 4.2 is a direct consequence of Theorem 4.1 and of Lemma 4.3. O
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As already mentioned at the end of Section 2, our main Theorem, namely Theorem 2.1,
is a direct consequence of Theorem 3.1 (Section 3) and of Theorem 4.2.

We end this section with a few words concerning the case where, as in [21] and [23], one
assumes some further properties on the spatial behaviour of the kernel u(n,z). Assume that
for some constant C', independent of the energy z, and for v < d one knows that for ., a.e z

> |u(n,z)|* <CN?, (Hypothesis (HS))
In|<N

then one can not only get a better result taking 8 = p/~v instead of 5 = p/d, but it turns out
that one can push one step further our approach to reach the dimension numbers fo " (1-5).
The gain takes place in Inequality (3.12), where a direct estimate is made possible thanks to
Hypothesis (HS). This thereby enables us to avoid the Cauchy-Schwarz inequality we made
in order to split the integral into a spatial part and a spectral part. This therefore leads to

2423
the lower bound ((|X[P))y,r > CLy(T, ¢) := Czﬂﬂ(w-

used to prove Theorem 4.1 supplies the following result.

Then the same technique as the one

Theorem 4.3. Suppose in addition to the hypotheses of Theorem 2.1 that the spatial Hypoth-
esis (HS) above holds for some v and constant C. Then, if B = p/vy < 1, one has

o og((IXP) g . log Ly (T) _
—_— T > —— r  — _
thi>1c>Ic1>f ogT - thigoréf logT D, (1= B);
" ey PP o g (T)
liql—folip logT' - lqgl_folip logT " Hv :
Appendices

A Complement of Section 2

For the reader’s convenience, we provide the proof of statements ii) and iii) of Proposition 2.1.

Proof of ii) of Proposition 2.1. We first note that from the convex Jensen Inequality, and
since ¢ — 1 < 0, we have, for any set A C R

1
g—1

/27 = ([ uto = /2.2 ¢/2 au(e))

1
1
< (/ uwlx—e,z+ g)q—ld,u(x)> ! < / ulx — e,z +€)du(zx) . (A.1)
A A
Consider now, for all v € (0, 1), the set

AN ={z eR | plx —c,z+¢) < imal)—ry
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We have
A = limié1f ADE) > {zeR| 7, (z) > dimn(p) — v}
E—
By the definition of dimp(x) given Line (2.1) we get u({z € R | v, (z) > dimu(n) —v}) > 0.
Furthermore, liminf._,o N(A,(,H))(e) > ,u(A,(,H)) > p({r € R | v, (z) > dimu(p) — v}) > 0.
Thus, letting A = A,(,H)(s) in (A.1), we obtain

1
log I,,(g,¢/2)7 1
D (q) = liminf 128 74(@/2)"
# €0 log(e/2)

log (u(AI™ (e))edimnt )

llISIl)lélf og(e/2) = dimg(p) —v .
Since the above inequality is valid for all v € (0, 1), ii) of Proposition 2.1 is proven.
k

Proof of iii) of Proposition 2.1. We define, for ¢, = e~
AP ) ={z e R | p(z — e,z +ex) < 52imp(“)_"} .
Since limg_,o, logeg/loger1 = 1, we have limsupy_, . logu(z — ex,z + e)/loger =

lim sup,_,olog u(x — €, + ¢€)/loge. Thus we get

AP = limsup AP (ey)

k—o00

D {z€R| limsup M@ — ek, 2+ er)
k—00 log &,

= {zeR |7, () > dimp(p) - v}.

> dimp(u) — v}

Therefore, from the definition of dimp(u) given Line (2.1) and the above inclusions, we get
,u(A,(,P)) > 0. Using the Borel Cantelli lemma (as done in [15]) implies that ), M(A,(,P) (er)) =

oo and thus, there exists a subsequence €j(,) “\ 0 of € such that u(A,(,P) (ek(n))) = k(n)~2 =

(log Ek(n))_2. Thus, letting A = A,(,P)(sk(n)) in (A.1), we obtain

= log (A (exny))eimp ) v
1 v n n
D;T(Q) = lim sup —logI“(q,s)q > lim ( ()7 k(n) )

=di —v.
e—0 loge n—00 log ex(n) mp () = v

Again, since the result is true for all v € (0, 1), statement iii) of Proposition 2.1 is proven. [

B Relation to other lower bounds

Getting a growth exponent in terms of fractal dimensions fo " (q) is not specific to our lower
bound Ly (T) (3.2). It is also possible to get such relations from the lower bounds formerly
derived, either directly (Barbaroux-Tcheremchantsev’s lower bound Ly(T') below), either im-
proving them (Guarneri-Combes-Last’s lower bound, improved by optimizing in ¢ for each
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single T, see L1(T') below). We shall briefly explain this point in this section, and thereby
propose to the reader a link between the present work and the former methods. In particular
this appendix illustrates how actually deeply connected are the generalized fractal dimensions
Di () to the lower bounds of ({|X|P))y,r studied for the past ten years, that is since Guarneri
[14].

Since we shall focus on the relation between those lower bounds and the fractal dimensions
Dib (q), and for a sake of simplicity, we shall only consider vectors ¢ of the form xq(H)y
instead of general ¢ € M, as in (3.2).

We first consider the lower bound that appears in [5]. For some constant C(+,p) > 0, it
is shown that for all T' > 0,

(X)) gr > C - . = el
1 > C(,p)La(T), with Lo(T) =sup La(p,T) := 5 (T)ﬂﬂp xo(H)p ¢,

where

S,(T) = [ dup()dsy AT ~ 1)

Here R(w) can be chosen as the usual gaussian e~*/4, Then one can mimic the proof of The-
orem 3.1, and relate the quantity Ly (¢, T) = ||¢||**® /S, (T)? to the integral K,,,, (iigg, T-h.

More precisely, the same kind of Holder Inequalities as in (4.5)-(4.6) supplies an upper bound
for La(T') and using a set () in the same spirit as previously yields the lower bound, again

up to a logarithmic factor. The following theorem then holds:

Theorem B.1. Under the same hypotheses as in Theorem 2.1, one has

. log Ly(T) /1428 - log Ly(T) 1428
liminf ~8~2\") _ gp 1 08 n)
int = 1~ PPu \ 1) and Mmsw o =D (135

The second lower bound we want to discuss in this section is the improved version, using [5],
of the first kind of quantity that has been considered in order to bound from below ({| X |P))y. 7,
and that comes from Guarneri-Combes-Last [14, 7, 25]. Roughly, the basic idea is to take into
account the function Gy (T) := p, — esssup [ du,(y)R(T(z — y)) where R(w) = exp(—w?/4)
(notice that G,(T") will be smaller than CT~* if p, is uniformly a-Hélder continuous, see
(3.10) in [25]). One then uses Gy (T') in order to bound B,(T,N) defined as in (3.6) but
with 1/T fOT rather than 1/T [;7*° h(t/T). Using, for instance, 2|v(n, z)v(n,y)| < [v(n,z)|? +
o(n,9)P,

B,(T,N) < C//dutp z)dpe(y)R((z —y Z |v(n, z)v(n,y)|

[n|<N

CG,( T)/dw > v(n,z)|* < C'G,(T)N

n|<N

IN

Following [25, 5], this leads to the lower bound

p , _ _ el
(XD, 2 C,p)La(T), with Ly(T) =supq Li(e, T) := 5 G (TP ¥~ xa(H)p .
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One should compare the obtained lower bound Li(T") to the expression (6.10) in [25].
Then one can again mimic the proof of Theorem 4.1, and relate the quantity L, (7T") to the
integral K, w(%, T—1). This leads to the following theorem:

Theorem B.2. Under the same hypotheses as in Theorem 2.1, one has

. . log L1 (T) 7 1 + ﬁ . log L1 (T) 1 + ﬁ
liminf 2821\ _ gp d 1 V8 EVT) _ gp+ .
mint = T~ PPu 15950 and lmsw— m\1+28

One should also compare the expression of L1(T") and L(T') to the expression of Ly (T)
given Line (3.3), that is where as above the supremum is taken over the set of vectors ¢ =
xa(H), namely the supremum of ||¢[|274° /U, ,(T)?. One may have the right to wonder
whether there are some links between these quantities, and also whether Ly (T') is effectively
a better lower bound than L;i(T) and L2(T'). Theorem B.3 below answers to these questions.
This theorem is actually a consequence of Theorems 4.1, B.2 and B.1, and of the non increasing
property of the functions Df (@) (point i) of Proposition 2.1).

Theorem B.3. Under the same hypotheses as previously, one has

log L, (T log L1 (T log Ly(T
liminf 2826 (T) Sy inp 108 La(T) o log La(T)
T—oo  log T—oo logT T—oo logT

)

and
log L, (T log L1 (T log Lo(T
lim sup log Ly(T) > lim sup log Li(T) > lim sup Og—2()_
T—o0 IOg T T—o0 0og T— o0 log T

Remark B.1. 1) It is worth to point out that such a comparison is made possible thanks to
the upper bounds obtained for Ly (T'), Li(T) and Lz(T'); upper bounds that are for the first
time derived for such quantities.

ii) Theorem B.3 tells us that it is worth to deal with the crossed term in (1.6) while one devel-
opps By(T, N) with 1 = ¢ 4+ x. Dealing with the crossed term does lead to an improvement,
with regards to the former approaches (G-C-L) and (BT) where this term wasn’t treated well.
iii) One can show that Ly(p,T) > c1L1(p,T) with some constant ¢; > 0 uniform in T, ¢.
The latter is not true as one compares Ly (¢, T) and Lz(p,T) for some . We confess that
the inequalities involving Lo(T') in Theorem B.3 are quite a surprise for us, since we were
expecting the exponents of Ly(T') to be bigger than those of Lq(T).

iv) We believe a stronger version of Theorem B.3 to be true, namely: Ly(T) > c¢1Li(T) >
02L2 (T)

C A sufficient condition for Hypothesis (H)

The following statement gives a sufficient condition for (H) to hold, which can be useful for
applications.

Proposition C.1. Let 0 < g < 1. Assume that,

1—

(H1) for some A > q, one has / |z du(x) < +oo.
R

Then 0 < D (q) < 1.
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Proof of Proposition C.1.
Let b(z,e) = pu([z — €,z + €]). Define

Q(e) = {z € suppp | b(z,¢) < e},
and I; = [(j — 1/2)e, (j + 1/2)¢), j € Z. For any z € I,
u(la — e +¢l) > ulI) > u(l; NRE)) 1= by, (1)
We first remark that for any j, b; < e. Indeed, if b; = 0, it is trivially true. And if b; > 0,
there exists zg € I; N §)(e). The inequality (C.1) and the definition of () imply
bj < p(lzo —€,z0 +¢]) <e.

Next, the inequality (C.1) yields

-1 _ T -1 z
A(s)b(w’g)q dule) = Z ﬁjﬂQ(E)b( )

j:b;>0
< Y uINQE) T Ne) =D b (C2)
§ib;>0 JEZ

One can rewrite this summation as follows:

D Zsk, S o= b, (C.3)

JEZ jedr

where Jy = {j € Z | I; C [eF, ety U[—e*tl, —€k)} for k> 0 and Jy = {j | I; C [—e,e)}. To
be rigourous, Equality (C.3) holds if one replaces in the definition of the sets Ji the quantity
e® by [e¥/ele 4+ £/2, where [-] stands for the integer part, but for a sake of simplicity we shall
use the definition of Ji given above.

Let v € (0,1). For k > 0, Holder inequality and the fact that CardJy, < 2(ef*! —e¥)/e <
4e* /e and b; < e imply

e 1-—vq
Z bl — Z bvqb(l 7)q Z b; Z b(i 13;1
JE€Jk JE€Jk J€Jk JEJk
A T vq Yq
< ellme < Z ) S| =der 9 [ Ny, (C.4)
JEJk JEJk

From Assumption (H1) it is straightforward that there exists C(\) < oo such that for all k
D b < () < C(Ne FA (C.5)
j€Jk j€Jk

with A from the statement of the Proposition. Then one can find vy € (0, 1) such that Ayg —
(1 —~yq) > 0. Then (C.3)-(C.5) imply

qu < 4C9(N)ed” lze FAva=(1779)) < D(g, A)e? L. (C.6)
J k=0
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The proof is completed as follows. One can write I,(qg,€) as

I,(q,e) = / +/ b(z,e)? 'du(z) =: I + L.
Qe)  IR\O(e)

The bounds (C.2) and (C.6) give Iy < De?~!. Furthermore, due to the definition of (¢) and
q € (0,1), we have
I <eT 1R\ Q) <e?l.

We obtain so I,(q,e) < (D +1)e? ! and thus Dl:f(q) <1

Corollary C.1. Let p be such that
/ |z[*du(z) < +o00 for any A > 0.
R

Then fo(s) € [0,1] for any s € (0,1) and thus (H) holds. In particular, this is true if u has
a compact support.

D An example of finite pure point measure with non trivial
generalized fractal dimensions.

For A > 1 and a > 0, let a,, = a/n*, z, = 1/n®, where a > 0 is a normalization constant. We
define the finite pure point probability measure p1 =Y " ; ands, on R. As the measure p has
a bounded support, 0 < fo(q) < 1 for any ¢ € (0,1) - see Point iv) of Proposition 2.1. We
denote by B(z,¢) the closed ball of center x and radius €. For any given ¢ > 0, take N to be
the integer part of e 1/(17®). Thus, there exists a constant ¢ > 0 uniform in N (and ¢) such
that for all n < ¢N, u(B(xn,€)) = p({zn}) = an- Let ¢ < 1/A. Then we have

cN cN
L(a,6) = anpt(B(@,€))* ' > 3 p(B(wn,e)? lan =Y al ~Ce Tow . (D)
n n=1 n=1
Therefore ) N
Di(q) > — 9%
e Ty

This implies that for 0 < ¢ < 1/, one obtains strictly positive generalized fractal dimensions
fo(q) for the pure point measure y. Moreover, by taking ¢ and « small, one can render these
dimensions as close to 1 as one wants.

The estimate (D.1) is actually also valid for ¢ < 0 (and one can show that the dimensions
fo(q) are finite for any ¢ < 0). However, the behaviour of the fractal dimensions is rather
strange: they can be greater than 1 and the bigger is A, the bigger are fo (q) as ¢ — —o0:

A
. +

>
lminf D} (9) 2 375> 1,
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if a is small enough. Furthermore note that if u is now defined with a, = ae™*", then
Dl:f (q) = 400 whenever ¢ < 0. This shows that one should be very cautious when considering
possible physical applications of Df (¢) with ¢ < 0.

To conclude, we give the example of a self-adjoint operator H, and a state 1) as mentioned
in Remark 2.3 ii). We shall prove:

Theorem D.1. Let 8 > 0 and 6 > 0. There exist a bounded self-adjoint operator H on
H = £2(N) and a state 1 € H such that, with p = 3,

tim 08X Py

1
= DT | —— — )
Sm log T 0, but i ( 5) >0

1+
Proof of Theorem D.1.
Let § > 0 and 6 > 0 be as in the theorem, and v > 0 to be chosen later on. Let (e,)n>1 be
the canonical basis of £2(N*): e, (k) = 6nx, k,n > 1. Define a self-adjoint operator H in H as
follows:

He, =z,e,, z,=n ¢ n>1.

It is easy to see that the spectral measure pu, associated to the vector 9 (k) = Vak=?,
A =1+ +v, is exactly the measure p defined above (so supppy C [0,1] and Theorem 2.1
applies). Notice that (¢, k) = exp(—itx)1 (k). Then, as d = 1 one has 8 = p, and one checks
that

(X ) = 3" kP = C(v) < +oo.

k>1
Therefore, limy_,o log(({|X|P))y,7/logT = 0. On the other hand, as we have seen above,
Di/)(q) > 0 for any ¢ < 1/\ = H‘ﬁ L

Taking v small enough, e.g. such that T =
ﬁ — §/2, one gets the required example. O

Remark D.1. on can easily construct such an example on H = ¢%(Z%) too, by numbering
the canonical basis (ey),cz4 in a “spiral” way, and taking 8 = p/d as usual. Indeed, one then
gets en(k) = 1 for some k ~ n'/%,
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