EXPLICIT FINITE VOLUME CRITERIA FOR LOCALIZATION
IN CONTINUOUS RANDOM MEDIA AND APPLICATIONS

FRANCOIS GERMINET AND ABEL KLEIN

ABSTRACT. We give finite volume criteria for localization of quantum or clas-
sical waves in continuous random media. We provide explicit conditions, de-
pending on the parameters of the model, for starting the bootstrap multiscale
analysis. A simple application yields localization for Anderson Hamiltonians
on the continuum at the bottom of the spectrum in an interval of size O(X) for
large A, where A stands for the disorder parameter. A more sophisticated appli-
cation proves localization for two-dimensional random Schrédinger operators
in a constant magnetic field (random Landau Hamiltonians) up to a distance
O(lﬂglg) from the Landau levels, where B is the strength of the magnetic field.

1. INTRODUCTION

We give finite volume criteria for localization of waves in random media. The
emphasis is on providing explicit conditions, depending on the various parameters
of the model, for starting the bootstrap multiscale analysis [GK1]. These criteria
thus yield Anderson localization, strong dynamical localization, SULE, etc. (See
also [GK3] for a discussion of the consequences of the bootstrap multiscale analysis.)

In the lattice finite volume criteria for localization were provided by Aizenman
et al [ASFH]. Although we were motivated by continuum models, our criteria are
also valid on the lattice; in particular, they can be used to satisfy the criteria in
[ASFH).

The explicit finite volume criteria given in this article yield localization in situ-
ations where the crucial quantities of the model that enter the multiscale analysis
(the constant in Wegner’s estimate and the constant in the Simon-Lieb inequality)
depend on the parameters of the model (e.g., the disorder parameter, the energy
where localization is to be proven, the strength of the magnetic field).

To illustrate the need for such explicit criteria, let us consider the simplest An-
derson Hamiltonian in the continuum,

Hy,=-A+)V, on L*RY dx), (1.1)
where A > 0 is the disorder parameter and the random potential V, is of the form
Vu(z) = Z wiu(z — 1), (1.2)

€L
with u(z) > 0 a bounded measurable function with compact support such that
0<U_- <Y cpau(z—i),and w = {w;; i € 74} a family of independent, identically

distributed random variables taking values in the interval [0,1], whose common
probability distribution p has a bounded density g > 0 a.e. in [0,1]. This model

2000 Mathematics Subject Classification. Primary 82B44; Secondary 47B80, 60H25.
A K. was supported in part by NSF Grant DMS-0200710.

1



2 FRANCOIS GERMINET AND ABEL KLEIN

was studied by Combes and Hislop [CH1] and Kirsch [Ki], who proved that for
any fixed energy F; > 0 we have Anderson localization in the interval [0, E4] for
sufficiently large disorder. (Note that 0 is the bottom of the spectrum.)

But suppose we ask a different question: If [0, E,] is the largest interval at the
bottom of the spectrum in which H} ,, is localized, how does E) grow with A? To
provide a lower bound on E') we need explicit criteria, because both the constant Qg
in Wegner’s estimate and the constant g in the Simon-Lieb inequality increase as
the energy FE increases, so as we increase F the initial length scale for the multiscale
analysis also increases. Thus if E is increasing with A we cannot fix a length scale
and satisfy the initial condition for the multiscale analysis at the A dependent
energy E by taking the disorder large enough; the initial length scale also grows
with A and hence is a moving target. Nevertheless, by using our explicit criterion
we will show that there is a constant C such that we have Ey > CA for large A. In
addition, we show that eigenfunctions with eigenvalues in the interval [0, E] decay
exponentially with a rate > C’v/\ for some constant C’. To our knowledge these
are the first results of this kind in the large disorder regime..

In [GK4] we extend this result by having the random variables w; take values in
the interval [—1, 1], with a bounded density p > 0 a.e. in [—1,1]. Now the bottom
of the spectrum of H) is at about —CA for some constant C, and the vg grow like
VX for fixed E. It follows that even to prove localization in an interval of fixed
length at the bottom of the spectrum we need explicit criteria, since the initial
length scale now grows with A\. Our explicit criteria can be used to prove Anderson
localization in an interval of size O(A) for large A at the bottom of the spectrum.
The result is still true if u € LP with p > % instead of bounded.

For a more sophisticated application of our explicit criteria we revisit the two-
dimensional random Schrédinger operator in a constant magnetic field (random
Landau Hamiltonian). This model was studied by Combes and Hislop [CH2] and
Wang [W1], who obtained Wegner estimates and probability estimates on the decay
of local resolvents using percolation arguments. (See [DMP1, DMP2] for a related
model.) However the effect of the dependency of the initial length scale for the
multiscale analysis on the strength B of the magnetic field and on the distance to
the Landau level was overlooked. It is fair to say that the multiscale analyses avail-
able at the time did not provide the tools to handle this dependency. Combining
the Wegner estimate and the probability estimate on the decay of local resolvents
obtained in [CH2] with our explicit criterion, we give a complete proof of Anderson
localization up to a distance 0(%) from the Landau levels for large B. It tuns
out that the initial length scale for this problem is a “Goldilock” scale: it cannot
be too big or too small, it must be just right for the strength of the magnetic field.

We also obtain estimates on the rate of exponential decay of eigenfunctions of
random Landau Hamiltonians: for eigenvalues at a distance O( %) from a Landau

v
level the rate of decay is > O ((% ), where the exponent v > 0 comes from the

probability distribution of the random variables and two-dimensional percolation,
typically v > 1; at a fixed distance of a Landau level, i.e., O(1), the rate of decay
is >0 (\/E)

The issue of the dependency of the initial length scale for the multiscale analysis
in terms of the parameters of the model also appears when investigating localization
at the bottom of the spectrum for the Anderson model at low disorder, as in the
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work of Wang [W2] and Klopp [Klo2], since the constant in the Wegner estimate
blows up as the disorder goes to zero. Our explicit criteria may be used to handle
this dependency and perform a multiscale analysis.

Localization for continuous random operators has been usually proven by a
multiscale analysis. (But note that the Aizenman-Molchanov method has just
been extended to the continuum [AENSS].) In this context the multiscale anal-
ysis is a technique, initially developed by Fréhlich and Spencer [FS] and Frohlich,
Martinelli, Spencer and Scoppolla [FMSS], and simplified by von Dreifus [vD]
and von Dreifus and Klein [vDK], for the purpose of proving Anderson localiza-
tion. i.e., pure point spectrum and exponential decay of eigenfunctions. (See also
[HM, CKM, Sp, KLS, vDK2, K, CH1, Klol, CH2, FK1, FK2, W1, BCH, KSS1,
KSS2, CHT, FLM, W2, St, KK2, U].) It was later shown to also yield dynamical
localization (non spreading of the wave packets) [GDB, DS, GK1].

Recently, the authors developed a more involved procedure, built out of four
different multiscale analyses, called a bootstrap multiscale analysis [GK1]. It yields
Anderson localization, SULE-like estimates, sub-exponential decay of the kernel of
the evolution operator, and strong Hilbert-Schmidt dynamical localization. A new
feature of this bootstrap multiscale analysis is that, unlike the formerly standard
multiscale analysis (e.g. [FS, FMSS, vD, vDK, CH1, St]), the strength of the
conclusions is not affected by the rate of decay in the starting condition.

We give three explicit finite volume criteria for starting the bootstrap multiscale
analysis. Theorem 2.4 gives a criterion for starting the bootstrap multiscale analysis
at a “a priori” specified initial length scale; we may thus play with the parameters of
the model to satisfy the starting condition at the specified length scale. Theorem 2.5
provides an explicit expression for the minimum initial length scale required to start
the bootstrap multiscale analysis with a “a priori” specified decay; it typically
requires large scales, but not large enough scales: how large the initial length scale
has to be is made precise by the criterion. Theorem 2.6 is an analog of Theorem 2.5
but for the second multiscale analysis of the bootstrap scheme described in [GK1];
it also gives an estimate of the exponential rate of decay of the eigenfunctions in
terms of the constants of the problems. These criteria reduce the requirements of
the multiscale analysis to explicit and transparent conditions. (The criterion of
Theorem 2.4 is specially simple.)

This article is organized as follows: Our explicit criteria for localization are stated
in Section 2; their proofs are given in Section 5 (Theorems 2.4 and 2.5), Section 6
(Theorem 2.7, a general criterion that gives Theorems 2.4 and 2.5 as special cases),
and Section 7 (Theorem 2.6). Section 3 is dedicated to localization at the bottom
of the spectrum of the Anderson model (in the continuum) at large disorder; the
main result is Theorem 3.1. Section 4 contains our discussion of localization for
random Landau Hamiltonians, the detailed description of our results is given in
Theorem 4.1.

2. EXPLICIT CRITERIA FOR LOCALIZATION

Our random medium is modeled by a Z?-ergodic random self-adjoint operator H,,
on L2(R4, dz; C*), where w belongs to a probability set 2 with a probability measure
P and expectation E. Our results apply to random Schrédinger operators (e.g.,
[HM, CH1, Klol, KSS1, GK3, AENSS]), random magnetic Schrédinger operators
(e.g., [CH2, W1]), and classical wave operators (e.g., [FK1, FK2, CHT, KK1, KK2]).
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We recall that it follows from the ergodicity that there exists a nonrandom set X
such that o(H,,) = ¥ with probability one, and that the decomposition of o(H,)
into pure point spectrum, absolutely continuous spectrum, and singular continuous
spectrum is also independent of the choice of w with probability one.

As in [GK1], we take as assumptions the properties of the random operator H,,
that are required for the multiscale analysis. These properties are routinely verified
for the operators of interest, except for the Wegner estimate which usually requires
more hypotheses on the parameters of the random operator.

Throughout this paper we use the sup norm in R¢:

|z] = |%|oo = max{|z;|, i =1,...,d}.
By Ar(z) we denote the open box (or cube) of side L > 0:
Ap(z)={yeR% |y—z| <%}, (2.1)

and by Az (z) the closed box. The characteristic function of a set A C R? is denoted
by xa; we set

XL = XAz (s) s With Xz = Xo1- (2.2)

In this article we will take bozes centered at sites © € 7% with side L € 2N. For
such a box we set

Tr(e)={y€Z% |y —z| = § -1}, (2-3)
and define its boundary belt by
Yi(2) = Aea(@)\Arsl@) = | M) (2.4)
yeYL(x)

it has the characteristic function

Lo, = Xt (2) = Z Xy G.€. (2.5)
yET L ()
Note that | Y (z)| < d(L — 1)?~1. We will also write
[K]en = max{L € 6N; L < K}. (2.6)

We need a notion of finite volume operator, i.e. a “restriction” H, , 1 of H,
where the “randomness based outside the box Ar(z)” is not taken into account.
Usually H,, .1, is defined as the restriction of H,,, either to the open box A (z) with
Dirichlet boundary condition, or to the closed box Az (z) with periodic boundary
condition. The operator H,, , 1, then acts on L?(Ar(z),dz; C"). But H, . 1 may
also be defined as acting on the whole space, by throwing away the random coef-
ficients “based outside the box Ap(z)”; this is usually used for random magnetic
Schrédinger operators [CH2, W1]. In all cases the finite volume operators have
either compact resolvent or are perturbations of the free finite volume operators by
relatively compact operators.

We assume that an appropriate choice of finite volume operators H,, ;1 has
been made. (The multiscale analysis is not sensitive to such a choice as long as
the required properties can be proven.) We write Ry, 5 1 = (Hy 2, — z)~1 for the
resolvent of H,, ; 1.

We assume that the random operator H,, satisfy the requirements for the multi-
scale analysis as in [GK1], i.e., it satisfies Assumptions SLI (Simon-Lieb inequality),
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EDI (eigenfunction decay inequality), IAD (independence at a distance), NE (aver-
age number of eigenvalues), W (Wegner estimate), and SGEE (strong generalized
eigenfunction expansion) in a given open interval Z.

We will now state Assumptions SLI, TAD, NE and W, since the constants in
these assumptions will be used explicitly in this article. We refer to [GK1] for
Assumptions EDI and SGEE and for a discussion of all these assumptions.

In what follows Z will be a fixed open interval.

Assumption SLI. There erists a constant vz > 1, such that given L, ¢, £" € 2N,
z,y,y € 7% with Api(y) C Apr_3(y') and Ap(y') C Ap_3(z), then for a.e w, if
EcT withE¢ o(Hy ) Uo(Hy,y o), we have

”Fw,LRw,w,L(E)Xy,l”” <z ||Fy’,l’Rw,y’,l’(E)Xy,l”|| ”Fw,LRw,w,L(E)Fy’,l’H - (2.7)

We say that an event is based on the box Ar(z) if it is determined by conditions
on the finite volume operator H,, , .. Given ¢ > 0, we say that two boxes Ay, () and

A (z") are p-nonoverlapping if |z—z'| > L+TL’+Q (i.e., if dist(AL(z), AL (2')) > o).

Assumption IAD. There exists ¢ > 0 such that events based on g-nonoverlapping
bozxes are independent.

Assumption NE. There exists a constant C'z such that
E(tr Eg,,, . (Z)) < CLL? (2.8)
for all x € Z* and L € 2N.

Assumption W. There exist constants b> 1, 0 < nz <1, and Qz, such that
P{dist(o(Ho.s.), E) < n} < QznL*, (2.9)

foral E€T,0<n<nz,zcZ% and L € 2N.

In practice we have either b = 1 or b = 2 in the Wegner estimate (2.9). Recently
the correct volume dependency (i.e., b = 1) was obtained for certain operators
[CHN, CHKN, HK], at the price of losing a bit in the 1 dependency. In this paper,
we shall use (2.9) as stated, the modifications in our methods required for the other
forms of (2.9) being obvious. (For a discussion of possible modifications see [GKI,
Remark 2.4].) Note also that usually 7z = 1, but not always, as in the case of
random Landau Hamiltonians (see Section 4).

We will look for localization by studying the decay of the finite volume resolvent
from the center of a box Ar(z) to its boundary as measured by

ITe, . Roz,n.(E) Xz, L3l - (2.10)

We use the convention that ||T'y L Ru,z,0(E)Xa,r/3l| = o0 if E € 0(Hy e,1)-
We start with two deterministic (i.e., for a given w, which is omitted from the
notation) definitions.

Definition 2.1. Given § > 0, E € R, z € Z?%, and L € 6N, we say that the box
Ar(z) is (6, E)-suitable if E ¢ o(H, 1) and

1
T,z Re, . (B)Xa /3]l < 75 - (2.11)
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Definition 2.2. Given m > 0, E € R, € Z%, and L € 6N, we say that the box
Ar(z) is (m, E)-reqular if E ¢ o(H,,1) and

L
T, R, (E)Xo,L/3ll < €77 (2.12)

We define the multiscale analysis region Yysa C X by requiring the conclusions
of the bootstrap multiscale analysis [GK1, Theorem 3.4].

Definition 2.3. The multiscale analysis region Ymsa for the random operator H,,
is the set of E € X for which there exists some open interval I > E, such that
Assumptions SLI, EDI, IAD, NE, W, and SGEE hold in I, and given any ¢, 0 <
¢(<1,and o, 1 < a < (', there is a length scale Ly and a mass m¢ > 0, so if we
set Lgt1 = [L{]en; kK =0,1,..., we have

P {R (m¢, L, I,z,y)} > 1 — e Lk (2.13)
for allk=0,1,..., and z,y € Z¢ with |z — y| > L, + o, where

R(m,L,I,z,y) = (2.14)
{for every E' € I, either Ar(z) or Ar(y) is (m, E')-regular} .

On Xumsa we have all desired properties of localization: Anderson localiza-
tion, SULE-like estimates, strong Hilbert-Schmidt dynamical localization, and more
[GK1]. We will give explicit criteria for F € Xyga.

In [GK3] we defined the strong insulator region ¥gj for H,, by

Ys1 ={E € ¥; H, exhibits strong HS-dynamical localization at E}.  (2.15)

The operator H,, is said to exhibit strong Hilbert-Schmidt dynamical localization at
E if it exhibits strong Hilbert-Schmidt dynamical localization in some open interval
around E. (We refer to [GK3] for precise definitions.) Note that Xgr is an open set,
and H, has pure point spectrum in ¥g;. We have Yysa C Xgr from [GK1, Proof
of Theorem 3.8 and Corollary 3.10]. (Note that Yysa in [GK3] is the same set as
in this article, although the two definitions are somewhat different.) If in addition
we have the decay estimates of [GK2, Theorem 2], uniformly for a.e. w (true under
very natural hypotheses), it is shown in [GK3] that if Assumptions SLI, EDI, TAD,
NE, W, and SGEE hold in an open interval Z, then %4, = ¥, where B = BNT
(see also [GK3, Theorem 4.2]), and we must have nontrivial transport in 27\%Z ¢, .

In this article we provide three explicit finite volume criteria for localization:
Theorems 2.4 and 2.5 which correspond to the first step (i.e., the first multiscale
analysis [GK1, Theorem 5.1]) in the Bootstrap Multiscale Analysis, and Theo-
rem 2.6 which corresponds to the second step ([GK1, Theorem 5.2]) in the Boot-
strap Multiscale Analysis. Theorems 2.4 and 2.5 are special cases of a general
explicit criterion, Theorem 2.7.

The first criterion works for a prescribed value of the initial length scale Lg. In
Section 3 we illustrate its use by proving localization for Anderson Hamiltonians on
the continuum at the bottom of the spectrum in an interval of size O(\) for large
A, where A stands for the disorder parameter.

Theorem 2.4. Let H, be a random operator such that Assumptions SLI, EDI,
IAD, NE, W, and SGEE hold in an open interval Z. Fix a length scale Ly € 6N,

Lo > max {6,39, n;[(%“’)d]_l} _ (2.16)
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Let Eg € ¥ NZT and suppose
24b)d
P{DILgs ) IT0, Lo Bus,0,L0 (E0) X0, L0 /3] < 1} >1— 5%, (2.17)
with
Dz = 3939 max {16 - 60%Qz,1} 73 . (2.18)
Then Ey € Xpr54-

The following criterion is for large initial length scale Ly and weak initial decay:
any rate that is faster than the volume (if b = 1 in Wegner) or the volume squared
(if b = 2) is allowed. It provides a precise estimate on how large Ly has to be,
depending on the parameters Q7 and 7 of the model, and on the prescribed rate
of decay of the resolvent.

Theorem 2.5. Let H, be a random operator such that Assumptions SLI, EDI,
IAD, NE, W, and SGEE hold in an open interval Z. Given s > bd, set

=5d 2 _1
£ = max {39, 42,3 (1027d) L (16-609Q7) T ny ° } . (2.19)
Suppose that for some Ly > L, Ly € 6N, and Eg € X NI,
P {90792(37L0)"||To,zo Ruv,0,L0 (Eo)X0,z0/3ll <1} > 1~ g - (2.20)

Then Eg € Xprs4.-

The next criterion is an analog of Theorem 2.5 but for the second multiscale
analysis of the bootstrap scheme described in [GK1], i.e., for the multiscale analysis
with exponential decay of the resolvent and polynomial decay of the probabilities
as in von Dreifus and Klein [vDK], modified as in Figotin and Klein [FK1, Theorem
32] to allow the mass in the starting hypotheses to decrease as the initial length
scale increases. Theorem 2.6 keeps track of the dependency of how large the initial
length scale has to be in terms of the constants coming from Assumptions SLI, NE,
and W. It will be used in Section 4 to prove localization for random Schrodinger
operators in a constant magnetic field (random Landau Hamiltonians) up to a
distance O(IO%B ) from the Landau levels, where B is the strength of the magnetic
field.

While Theorem 2.6 has stronger hypotheses than Theorem 2.5, it delivers more:
an estimate of the exponential rate of decay of the eigenfunctions in terms of the
constants of the problems. This is of great interest in the large disorder regime for
the Anderson model as discussed in Section 3, for the random Landau Hamiltonian
as in Section 4, and also in the regime of small disorder for the Anderson model as
studied in (W2, Klo2].

If the probability estimate in the initial length scale is sufficiently good, one may
use Theorem 2.6 to start the bootstrap multiscale analysis, instead of applying first
Theorem 2.4 or Theorem 2.5 and then bootstrapping to Theorem 2.6 to obtain the
exponential rate of decay of eigenfunctions. This is the case for the random Landau
Hamiltonians as in Section 4 and in the weak disorder regime for the Anderson
model as in [Klo2].

Theorem 2.6. Let H, be a random operator such that Assumptions SLI, EDI,
IAD, NE, W and SGEE hold in an open interval Z. Given Eg € X NI, p > 0,
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a:1+p1:r/22d,s>2p+(b+2)d, and 6 > 4as, set

_1

1 1
£ = max {39, 417571, 7 %, dist(Eo, R\T) ™ %, Q3 ", (2.21)

(16 - 3672~ C7Q7) T =) , (69%42) 7=1as , (3%77) %} )
If for some Ly > L, Ly € 6N, we have

P{AL,(0) is (0, Ey)-suitable} > 1 — Lig’ (2.22)

then there exists an open interval I = 1(0,s, Ly), with Ey € I C T, such that if we

set mg = 2010%;:0, and Liy1 = [Len, k= 0,1,..., we have

2
P{Ar, (0) is (3%, E)-regular} > 1 — 7 fordll E €1, (2.23)
and
P [R (™o, Ly, I,z,y)] > 1— 5 forz,y € Z%, |z —y| > Lr+ o, (2.24)

k
for all k =0,1,..., where

R(m’ L? I? x? y) = (2'25)
{for every E € I, either Ar(z) or AL(y) is (m, E)-regular} .

Moreover,

(i): INYCXuysa-
(ii): For almost every w, an eigenfunction ¢, g of H, with eigenvalue E € I

decays exponentially (in the L?-sense) with a rate > g%, i.e.,

I log L
liminf — Og”Xz(pw,EH > 0 og Lo )

2.26
|z|—o00 |£E| - 2Ly ( )

Theorems 2.5 and 2.4 are corollaries of a general criterion we will now state. We
set
(Y —4)4((3Y — 4)¢ — 49) ... ((3Y — 4)¢ — (S — 1)49)
S!

,B(Ya S) =
3y — 4)Sd
S! )

Theorem 2.7. Let H, be a random operator such that Assumptions SLI, EDI,
IAD, NE, W, and SGEE hold in an open interval Z. Pick p > 0, S > 2, and
1

S eN. Take s >p+bd,Y >8S+5,Y odd, and Ly € 6N, Ly > max{6,3g,n;§},
such that

(2.27)

- logY > 2.2
Tog Lo ogY > 85 +3, (2.28)

and

S(7S +2)%

s—p—bd d+2
(YLo) 2 27 Qs (3Y)e-1d

(2.29)
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In addition assume that

either Lo > (2B(Y, S + 1)Y?) 15 | (2.30)
d
or  p>d, 52%. (2.31)
Define 6y > s by
Lo = 4234(78 + 2)4(Y Lo)®. (2-32)
Then, if for some Eg € X NZT and 0 > 6,
P{Ar, (0) is (8, Eo)-suitable} > 1 — (28(Y, S +1)) "%, (2.33)

where B(Y, S+ 1) is defined in (2.27), then setting L1 =Y Lg, k=0,1,2,..., we
have

1
P{A,(0) is (6, Ep)-suitable} > 1 — o (2.34)

for all k > K, where K = K(d,p,Y,S) < 0. In particular Eg € Xprs4.-

Theorems 2.4 and 2.5 are derived from Theorem 2.7 in Section 5. Theorem 2.7
is proven in Section 6, and Theorem 2.6 is proven in Section 7.

Remark 2.8. The initial probabilities pg = ﬁ in Theorem 2.4 and py = ﬁ
in Theorem 2.5 are mostly indicative. We are applying Theorem 2.7 with S =
4Y =39 and S = 4,Y = 37, respectively, which are not optimal in terms of
probabilities. Indeed, from Theorem 2.7 one gets that po = (26(Y,S+1))~Y/5 (with
B(Y,S) defined in (2.27)), with Y = 85 + 5 as the best choice. By computing pg
for different values of S (S =2,3,---), one can check (by numerical computation)
that the optimal probabilities are:

e d=1; py = (24e) ! ~ 0.015 for S = +00, py ~ 0.013 for S = 13.

e d=2;py~29-107° for S=1,

e d=3;po~79-10"8 for S =6.
These probabilities are far from being optimal, but one can compare them to py =
iz given in [GK1, Theorem 3.4].

3. LOCALIZATION AT LARGE DISORDER

In this section we focus our attention on the simplest continuous Anderson model,

Hy, =—-A+)V, on L*(R? dz), (3.1)
where A > 0 is the disorder parameter and the random potential V,, is of the form
Vu(z) = Z wiu(z — 1), (3.2)

i€zd

with u(z) > 0 a bounded measurable function with compact support, say supp u C
A4(0), such that 0 < U- < Y, cgau(z — i), and w = {w;; @ € Z?} a family of
independent, identically distributed random variables taking values in the interval
[0, 1], whose common probability distribution x has a bounded density g with g > 0
a.e. in [0,a) for some a > 0. Note we have ¥y = [0,00), where X, denotes the
almost-sure spectrum of H) ., [KM, Theorem 3].

The finite volume operators H) , , 1 are taken as the restriction of H) ,,, either
to the open box Ay (z) with Dirichlet boundary condition, or to the closed box
A1 (z) with periodic boundary condition.
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For each A > 0, H), is known to be a random operator such that Assumptions
SLI, EDI, IAD, NE, W, and SGEE hold in any open interval (e.g., [CH1, Ki, St,
GK3]). In particular, [GK3, Theorem A.1] proves Asumption SLI with the constant
~z in (2.7) given by

YAz = SUpyag , With v\ g = 6v2d\/max{FE,0} 4 50d . (3.3)
EcT

The Wegner estimate (2.9) can be derived as in [Ki, Proposition 1] or [FK1, Theo-
rem 2.3] with b =2, nz =1, and

d
Ca 4

Qrz = JSE}II; Qg , with Qxp = —5=|9/lcc (max{E +1,0})2 , (3.4)
E

where Cgq y_ is a constant depending only on d and U_.
Assumption (NE) is satisfied with a constant
Crz=supCrg, with Cyg=Cyqu_ (max{E + 1,0})% , (3.5)
EeT
Note that this random operator satisfies the conditions of [GK3], so we have
Ymsa = Ysr.
Our result is

Theorem 3.1. Let Hy , be the Anderson Hamiltonian as in (3.1), and set
Lo = min{L € 6N; L > max{3p,3(2+ Vd)}}. (3.6)
Then there exists A\*, depending only on d, U_, ||g|lecc, and o0 , such that for any
A > \* we have
[0,cA] C Smsa with ¢ = GepormTs - (3.7)
Moreover there ezists ¢’ > 0, depending on d, U_, ||g||leo, and g, but not on A > \*,

such that if A > X*, then for a.e. w, if pxu,E 15 an eigenfunction of Hy , with
eigenvalue E € [0,c)], then

1 TY¥rw
lim nf — 28 IXe?nll o 3 (3.8)

|z o0 || -
Proof. For any § > 0 and Ly € 2N we have
P{w; >dforalli € AL, (0)} = 1—P{w; € [0,d] for somei e A, (0)}
1= dllglloo L. (3-9)

v

We fix § and Ly, and set
E\=16U_X. (3.10)
It follows that
P{Ax} 21— d|glleo L§ (3.11)
where A, denotes the event
Axr = {info(Hxw,1,) > 2Er}. (3.12)

We now use Theorem 2.4. To maximize §, and hence E), we need to minimize
Lyg; hence we pick Ly as in (3.6) and choose § by matching the right hand sides of
(3.11) and (2.17), i.e.,

Sllglloo Ll = 535 - (3.13)
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If w € Ay, it follows that
dist(E,0(Hxw,)) > Ex foany E € [0, E)], (3.14)

so we can use the Combes-Thomas estimate to get the decay of the resolvent for
any E € [0, E,]. Note that the exact dependency of the exponential decay rate in
the Combes-Thomas estimate in terms of the energy parameter and the distance to
the spectrum is crucial in our argument, since we deal with large energies and large
distances from the spectrum. Such a precise estimate is provided in [GK2, Eq. (19)
in Theorem 1]. Although these estimates are for operators on R?, the results in
[GK2] can adapted for finite volume. In a box A, (0), with either Dirichlet or pe-
riodic boundary condition, the same estimates as in [GK2, Eq. (19) in Theorem 1]
hold for z,y € Ar,—2(0) (i.e., at a distance > 1 from the boundary) but the expo-
nential rates of decay get divided by 1+2v/dLy. This can be seen as follows: in the
proof of [GK2, Theorem 1] we replace e*®® by e*(*#)¢(2) where (z) is a smooth
function such that 0 < ¢(z) < 1, ¢(z) = 1 for z € AL, 2(0), supp ¢ C A, (0), and
|Ve(z)| < 3Vd. It follows that |V ((a - z)p(z))| < |a|(1 +3vVdL) < |a|(1 +2VdL)
for all z € AL,(0). The proof then proceeds as in [GK2, Proof of Theorem 1] using
this estimate. (We can do better if we specify periodic boundary condition and use
the distance on the torus, see[FK1, Lemma 18] and [KK1, Theorem 3.6].)

Thus, using the adaptation of [GK2, Eq. (19) in Theorem 1] to finite boxes

with v = %2, we conclude that, if w € Ay and E € [0, E,], we have that for any

X,y € Vi OALO(O) =74nN ALO_Z(O),

o Rawzo BVl < gl e V2B (142VdLo) ™ (12—vl V)
< e VIR (2vane) (vl .19

Summing over the support of I'z, and of xy, /3, noting that if z € Ar,/3(0), y €
T 1,(0) we have |z —y| > Z2 — 1, and using (3.6) yields

—1

1T B, (B)xro ] < 3 Ly* V2P (132vak) 0 (3.16)

We will show that (2.17) of Theorem 2.4 is satisfied for all E € [0, E,] for large

disorder. Let Z) = (—o0,2E) — 1), we have, using (2.18), (3.3), (3.4), (3.10), and
(3.16),

Da, L5V 01, B (B (3.17)
— 39 max {16 - 60Qz,,1} 12, Lg’ *IIT 10 R, 1o (B)X 1o 3]
< g am{3-10tg—e2VA (3.18)
< 1, (3.19)

where (3.18) holds for w € Ay with ¢; and cp constants depending only on d, U_,
ll9]lcc, and g (note that we fized Lo and ¢ in (3.6) and (3.13)). We conclude that
there exists A*, depending only on d, U_, ||g||cc, and g, such that we have (3.19)
for all A > A\* and w € A,.

Thus condition (2.17) holds for A > A* and F € [0, E,] by (3.11), hence Theo-
rem 2.4 implies that [0, $6U_\] C Zusa.
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Let us turn to the rate of the exponential decay of the eigenfunctions with
energies in [0, 26U_M]. Let 6, be defined by

Lg% = 24 [24-1e- V25 (1+2vdLe) ™t (3.20)

Then (3.16) says Ar,(0) is (6, E)-suitable for any E € [0, E5]. Note that from
(3.17) and (2.18) (see (5.4)) one checks that 6 > 6o x, where 6 is as in (2.32).
Moreover, it follows from (3.20) that

05 > coVA forall A > \*, (3.21)

where ¢y is some constant and \* is taken large enough (both depending only on
d, U-, ||9]lcc, and o).

As in [GK1, Proof of Theorem 3.4], we bootstrap from Theorem 2.7 (of which
Theorem 2.4 is a special case) to Theorem 2.6. Note that we have the conclusions
of Theorem 2.7 with p = g, S =4, and Y = 39, ie., if we set L = 39%L,,
k=0,1,2,..., where Ly is as in (3.6), then for all A > A* we have

P{Az, (0) is (6x, E)-suitable} > 1 — = | (3.22)
Li
for all E € [0, E)] and k > K, where K = K(d, g) < oo is a constant depending only
on d and p. A key fact is that K does not depend on A.

We now want to feed (3.22) into the hypotheses of Theorem 2.6. We have already
fixed p = %, and hence « is fixed. On the other hand for each A we have § = 0, as
in (3.20), and Qz, , Cz,, and 7z, grow polynomially with A. To control £ as given
in (2.21) with all this dependence in A, we pick the remaining parameter, s, to also
depend on X\ by sy = logA. By taking A\* sufficiently large, as before depending
only on d, U_, ||g]lco, and g, and using (3.21), we can also guarantee 0y > 4as)
and sy > 2p + (b+ 2)d for all A > A*. It follows from the explicit form of (2.21)
that

Lo =sup sup Ly(E)< oo, (3.23)
A>A* E€[0,E,]
where L) (FE) is given by (2.21) with By = E, Z =1y, p = g, 6 = 6, and s = s,.
Note that £, depends only on d, U_, ||g||c, and .

We now fix k to be that smallest k£ > K such that Ly = 39¥Ly > L. It follows
from Theorem 2.6 that if A > A*, then for almost every w, the eigenfunctions ¢, ., £
with energy E € [0, E,] decay exponentially (in the L%-sense) with

log || Xz %2 w,El S Oxlog L,

lim inf — 3.24
EES | = 2L, (3:24)
so (3.8) follows from (3.21). O

4. APPLICATION TO LANDAU HAMILTONIANS WITH RANDOM POTENTIALS

In this section we study a two-dimensional random Schrodinger operator in the
presence of a constant transverse magnetic field, the Landau Hamiltonian, with a
random potential:

Hp,=Hp+V, on L*R?dz), (4.1)
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with
. 2 B
Hp = (1V+A) , A= 5(.%2,—&21) (42)

where A is the vector potential, B > 0 is the strength of the magnetic field, and
the random potential V,, is of the form

Vu(z) = Z wi u(z —1), (4.3)
i€z?
where, following Combes and Hislop [CH2], we require conditions (R1) and (R2):
(R1): 0 < u(z) € C?, with 4(0) > 0 and suppu C B(0,7,), 0 < r, < —=.
(Note B (0,7) = {x €R?; |z|y = (22 4+ 23)? < 7'})
(R2): w={w;; i € Z?} a family of independent, identically distributed random
variables, whose common probability distribution x has a bounded density g,
even (i.e., g(t) = g(—t)), with g > O a.e. in [-M, M] and g = 0 on R\[-M, M]
for some finite M > 0.
We set ||ul|oc = 1 without loss of generality. (We absorb it in M and g.) Note
that V,, is uniformly bounded:

S

|Vo(z)] < 2M for a.e. w and all z € R?. (4.4)

In addition, we make a further requirement in Theorem 4.1:

R3): For some ¢ > 0 and some finite constant C; > 0 we have
(
t
u([0,¢]) = / g(s)ds > C; min{t, M}* for all t > 0. (4.5)
0

The hypothesis (R3) is new; it allows the use of nontrivial results from percolation
theory, as in (4.24) and (4.27). It is equivalent to liminf; .o % > 0. We set
v =19( > 0, C3 = C2C7°, where vyp > 1 and C, are constants given by two-
dimensional percolation theory (see (4.24)). The exponent v plays an important
role in our analysis as, e.g., in (4.9). Note that if the density g is continuous at 0
with g(0) > 0, then we may take ( =1 and hence v = vy > 1.

Hpg,, is a Z4-ergodic random self-adjoint operator on L2(R?,dz) [CH2]; X5 will
denote its almost sure spectrum. Recall that the spectrum of the free Landau
Hamiltonian Hp consists of a sequence of infinitely degenerate eigenvalues, the
Landau levels:

B, =(2n+1)B, n=0,1,2,.... (4.6)
It follows that
$p C |J Bn, with B, =[B,—2M,B,+2M]. (4.7)
n=0

We will assume B > 2M so the bands B,, are disjoint. We recall that the size of a
possible spectral gap in X g N B, is at most O(B*%) for large B (depending on n)
[CH2, Theorem 7.1]. (Note that if u € C°°, then the size of possible spectral gaps
is at most O(B~>°), see [W1, p. 3].) This is enough to ensure that the result of

Theorem 4.1 below is not empty.
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Theorem 4.1. Let Hg,, be the random Landau Hamiltonian (as in (4.1)), sat-
isfying (R1), (R2), and (R3). For any n = 0,1,2,... there exists a finite con-
stant B, > 0, depending only on n, M, ry, [|Vu|leo, and ||Aul|c, such that, given
0<M<M , there exists a finite positive constant B(n), depending only on n, M,
Tu, ||VUlloo, [|AU]|oo, |9]loos Cs, v, and M, such that for all B > B(n) we have

EB,nzzBm{EeBn, |E — B,| zan%ﬁ} C Susa (4.8)
with K, (432;&, and for a.e. w, if pp ., g 15 an eigenfunction of Hp ., with

eigenvalue E € X ,, then

lim inf — 08 IXe®B.w.5] w)
n|E—Bn|'t*B ! (log B)” log B 9
TllloglEJBnn > = if 2K, %= < |E - B,| < %
>{ 1,|B-B.["VB B3

log[E—B.[| = ~logB ZfES|E—Bn|§2M ;
VB if2M < | - B,| <2M

where Ty, ), > 0 are constants depending only on M, M y Bn, C3, and v.

Theorem 4.1 is proven by using the results of [CH2] to satisfy the hypotheses
of Theorem 2.6. Note that we could also work with the hypotheses used by Wang
[W1], in which case we obtain the results of Theorem 4.1 for energies at a fixed
distance from a Landau level, i.e., 2M < |E — By,| < 2M for a given 0 < M < M,
including a rate of exponential decay for the eigenfunctions o« v/B.

Following [CH2], we introduce the lattice

I'=(3,3)+eivV22?%, (4.10)

which is just the lattice Z* with the origin shifted to (3, 3), rotated by 45°, and

rescaled by v/2. We will denote sites in T by #,%,.... Each site in Z? is the middle
point of a bond in I'. We will work with open boxes in the lattice I':

Ap() ={yeR% Jy—i <L}, (4.11)

where & € T, L € 4N, and |z, = |21] + |22|, so the the boundary of Ay (%) is made
out of bonds in I'. Note that 2 |x — (é, é) | is just the sup norm in the coordinates
given by axes parallel to the bonds of I, centered at (2, 2) and rescaled so of bonds
in I' have length one. (That’s why we have |y — &1 < L and not < £ in (4.11).)

We also adapt (2.2)-(2.5) to the lattice I':

X#,L = XK,z With Xz =Xz,1, (4.12)

Yo%) ={§ € T3l§ - #h = L -2}, (4.13)

Tr@) = Ao @\Aa@®) = |J K@), (4.14)
JeYL(2)

Lar = Xt,) = Z Xy a-e (4.15)
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Note that all of our results are valid with this choice of boxes with no change in
the constants in our theorems. (The boxes and the corresponding boundary belts
are just the usual ones (e.g., (2.1)-(2.5)) in the rescaled lattice I".)

We define (as in [CH2]) the finite volume operators by

Hpws1=Hp+Vosr, (4.16)
with £ € T, L € 4N, and

Vo,,0 = Z wiu(z —1) = Z wi u(z —1). (4.17)

i€Z2nA L (8) i€Z2, supp u(z—i) CAL(3)

Note that V,, 31 has support in AL () and is relatively compact with respect to
Hp, so the essential spectrum of the finite volume operators consists of the Landau
levels given in (4.6). Note that (4.7) also holds for these finite volume operators.

By the definition of V,, 5 1 we clearly have Assumption IAD with p = 0. As-
sumption SLI inequality can be proven as in [GK3, Theorem A.1] for any open
interval Z, with the constant vz in (2.7) given by

vz =supvyg , with g =%v/max{E,0}+1, (4.18)
BeT

where the constant 4 depends only on M; it does not depend on B. (Although, as
noted in [CH2], we have

XieVors.r, — Voygue 20 if Re(¥) C (@), (4.19)
we also have
X 1(Vusr —Vuge) =0 if Ko@) C ApL(#), (4.20)

so the proof of Assumption SLI is not affected.) Assumption EDI also follows in
the same way.

Assumption SGEE follows from [Si, Theorem B.13.2] and properties of Schrédinger
operators, as in [CH2, Section 5].

Combes and Hislop [CH2, Theorem 3.1] proved the following form of Assump-
tions NE and W (note that b = 1):

Theorem 4.2 ([CH2]). Let Hp,, be the random Landauw Hamiltonian (as in (4.1)),
satisfying (R1) and (R2). For any n = 0,1,2,..., there exists a constant Qn =
Qnllglloo, with the constant Q, depending only on r, and M, such that for any
closed interval I C B,\{B,} we have

E{EHB,w,i,L (I)} < %Qnm |I| L? ) (4'21)
forall B>2M,z €T, and L € 2N.

In particular, for any E € B,\{Bn} we have

5 2, (4.22)
(IE = Ba| =)

forall0<n<|E—By|, B>2M, % €T, and L € 2N.

P{diSt(U(HB,w,i,L),E) S 77} S Qn

In addition, Combes and Hislop [CH2, Proposition 5.1] obtained length scale
estimates. Their argument relies on independent bond percolation on the lattice I'.
We will need some notions of independent bond percolation in Z? (see [Gr]). We
denote by p the probability of a bond being occupied. The connectivity function
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7p(z) is given by the probability that 0 is connected to z € Z* by occupied bonds.
We have [Gr, Proposition 5.47)]

Tp(z) < e @Il with ¢(p) = -1 log7,((n,0)) > 0. (4.23)

The function ¢(p) is continuous and nonincreasing on [0,1], with ¢(3) = 0 and
©(0) = oo [Gr, Theorem 5.14], where we used that in two dimensions the critical
probability p. = % [Gr, Theorem 9.11]. Moreover, it follows from [Gr, Egs. (5.51),
(9.95), (9.97)] that there are finite constants C2 > 0 and vy > 1 such that

o(p)>Ce (3-p)" if p<3. (4.24)

To make the connection to random Landau Hamiltonians satisfying (R1) and
(R2), given a > 0 we let

pa)=1- [ gyar—j-f g, (4.25)
and set
m(a) = ¢(p(a)). (4.26)

(Note that p(a) = 0 if @ > M.) If in addition we have hypothesis (R3), it follows
from (4.5) and (4.24) that

m(a) > C3 min{a, M}" for a > 0, withv =vy{ > 0, C3 = C2C}°. (4.27)

(In fact m(a) = oo if @ > M.) This lower bound on m(a) will play a crucial role in
the proof of Theorem 4.1 as we let a = @ —~0as B — 0.
We may now restate [CH2, Proposition 5.1] as follows:

Theorem 4.3 ([CH2]). Let Hp,, be the random Landauw Hamiltonian (as in (4.1)),
satisfying (R1) and (R2). Let E = B,+2a for somen =0,1,2,..., with0 < a < £.
There exist a geometric constant C4 > 0, and constants Y, > 0 and B8, > 0,
depending only on n, M, r,,||Vt|eo, and ||Au||c, such that for any 0 < § < a,
£ €T, and L € 6N,

B _ minq a
P{ 02 R 21 (B) s ol < Yoy Pominoo /B | (4.28)

0B
> 1— CyLe ™ —Q, TLQa
a
where the constant Q, is as in Theorem 4.2.

We are now ready to prove Theorem 4.1. As in [CH2], Theorem 4.3 will be
used to obtain the initial length estimate for the multiscale analysis. The decay
given in (4.28) is independent of the scale, so the rate of exponential decay given

at the length scale Lg is =~ w Thus Ly cannot be too big, depending

on the strength of B through the “constants of the model and on the distance a
to the Landau level. On the other hand the multiscale analysis requires the initial
length scale Lg to be large enough, depending also on the strength of B through the
constants of the model and on the distance a to the Landau level. For these reasons
Theorem 4.1 cannot be proven by a naive application of the multiscale analysis as
stated in [FS, vDK, CH1, GK1, St]. Theorem 2.6 will take care of these conflicting
demands.
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Proof of Theorem 4.1. Let us fix n = 0,1,2,.... For each E € B,\{B,} we set

E—-B
a=a(E)= % (note 0 <a < M), (4.29)
and define open intervals
Ig = (E—-a,E +a), (4.30)
where we have Assumptions SLI, NE, and W with constants
VZg = 'Yn\/Ea with v, = 5v/2(n +1); (4.31)
B
B a
QIE = 4Qna_2a Ny = 3> b=1; (433)

where (4.31) follows from (4.18), (4.32) from (4.21), and (4.33) from (4.22).

To apply Theorem 2.6 at a given energy FE € B,\{B,}, we must pick appropriate
p>0,a=1+ %, s > 2p+6, and 6 > 4as, and use the estimates of Theorem 4.3
to satisfy (2.22) at some length scale Ly > £, with £ = L(E, B) given by (2.21)
with 7 =Tg.

We start by fixing p > 0, to be specified later, and setting a = 1 + %; note
that 1 < a < % We will choose s and 6 later depending on a, B, and p.

Given E € B,\{B,}, to satisfy (2.22) from (4.28), it suffices to verify

B ; 1
Yn_ —Bn mln{aB7\/§} < — 4.34
as? ° - LY’ (434)
1
—m(a)L
CyLoe ™o < T (4.35)
5B _, 1
Qna—2L0 < m , (4.36)
for some 0 < § < a and an appropriate choice of the initial length scale Ly .
We start with condition (4.35). Using (4.27), it suffices to establish
v 1
CyLoe @ Lo —. 4.37
aLoe < o (4.37)
To do so, we pick 0 < M < M and choose (keeping in mind (2.21))
Cslog 4 Cslog 22 Cslog M
Lo = Lo(a) = max{ 58 P EM g >5%a (43g)
al/ MV 6N al/

where the constant C5 is chosen large enough so that (4.37) holds for all 0 < a < M ,

8
(p+D)(v+1) a17°t e A
Cs ’ log % :

and hence for all 0 < a < M, and we also have C5 > max {

The constant Cs depends only on C5, M, M , v, and p (C4 is a geometric constant).
By construction
Cslog X

Lo(a) > TM > 41735 (4.39)

forall0 < a < M.
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We now fix K,, > 0, to be specified later, and require

log B
K, B2 <o< M. (4.40)
B
For B large enough (so K, log B < v/B), it follows from (4.40) that
min{aB,VB} > K, log B. (4.41)
We have
LO( ) S (log B)' ™V BY if K, %8 <a< L
Lo(a) < Lo( 13) <c logB )B% if L <a<M (4.42)
L(M)gc"l°g”+6 M <a<M

for B > B;(n), with B;(n) depending only only on C3, M, M, v, p, and K,,. We
take B (n) sufficiently large so we also have

log Ly(a) < 2vlog B for all a as in (4.40). (4.43)

To satisfy (4.36), we set

a2

2Q,BLy(a)Pt?

the last inequality holding for all a as in (4.40) and B > By(n) in view of (4.39),
where the constant By(n) depends only on M, M, v, Cs, Qn, p, and K,.
It remains to verify condition (4.34) for this choice of ¢, which follows if

1

6 =6(a,B) = <a, (4.44)

2 3,5 o Bnmin{aB, vB}
4Y,Q, B°a < L) 27D (4.45)
ie.,
ﬂn min{aB,vB} — log (4Y,Q%B3a™5)
—2(p+2). 4.46
We take
B, min{aB, \/_}
0 =06(a,B n 4.47
(@ B)= log Lo(a) (447)
where we require
8+4 2
Bl= - ST (4.45)

and, using (4.43) and (4.41), check that 6(a, B) satisfies (4.46) for all a as in (4.40),
as long as and B > Bj(n), where the constant B3(n) depends only on M, M, v,
CB, Yna Qna b, and Kn-

We now choose s = s(a, B) > 2p + 6, satisfying 0(a, B) > 4as(a, B), and show
that for sufficiently large B we have, for all a as in (4.40), that Lo(a) > £, with
L = L(E, B) given by (2.21) with T = Zp.

To satisfy

1

1
7272 < Lo(a) and (16-36°2°*C1,Q1,) " < Lo(a) (4.49)
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for large B and all a as in (4.40), it suffices to require (s —p —2) log Lo(a) > 3log B
and (s — 2p — 6) log Lo(a) > 5log B, respectively. Thus we set
5log B

= = 2 4A
s = s(a, B) logLo(a)+ p+6, (4.50)

and satisfy (4.49) for all a as in (4.40) if B > B4(n), with B4(n) depending only
only on M, M , C3, v, p, Qn, and K,,. Moreover, since it follows from (4.43) that
s(a,B) > £ > 1 for B > By(n), we may take B, (n) large enough so we also have
nz.?, dist(E,R\Zg)~} < Lo(a) for B > By(n).

In view of (4.31), a < 2, (4.47), (4.50), and (4.43), if we require

34+4 3
Bl > 34+4v(p+3) >0, (4.51)
K,
we have
4
(69%4%,) % ** < Lo(a) (4.52)

if B > Bj(n), with B5(n) depending only only on M, M, Cs, v, p, and K,,.
Recalling (4.39), it only remains to satisfy

16
(8%725) ®=D < Lo(a), (4.53)

which, again using a < 2, follows from

24(p+4)

! 4.54
IBTL > pKn ) ( 5 )
and B > Bg(n), with Bg(n) depending only only on M, M, v, Cs, p, and K,,.

In pursuit of simplification, we now choose p = % and set

43+ 20v
Bn
so conditions (4.48), (4.51), and (4.54) are satisfied. We also set B(n) = max{B;(n),
1,2,...,6}, which depends only on n, M, M, 7, ,||Vu||co, ||AU||co, [|g]lce, C3, and
v, and take B > B(n). For any F € Xp, we can now verify the hypotheses of
Theorem 2.6 with Lo and 6 as in (4.38) and (4.47), and conclude that (4.8) holds,

i.e., ¥pn C Xmsa- Moreover, for a.e. w, if g, g is an eigenfunction of Hp ,, with
eigenvalue £ € X g p,, then

K, (4.55)

log |xz¢B.wnl - B,min{eB, VB}

lim inf — 456
E—o0 |21 - 2Lo(a) (4.56)
ﬂ;taH—VB ﬂInK};-(—V(lOg B)Y . log B 1
2(05 log %+6av) — 2Cs BV if Kn B S a S VB
1—v
Bia*VB B.B 2 e 1 —~
= 2(Cs log 2 +6av) Z 351z B if 7z<a<M (4.57)
b M VB if M<a<M

2(Cs log %+6ﬁ”)

where we used (4.42). The estimate (4.9) follows. O

.
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5. PROOF OF THEOREMS 2.4 AND 2.5

The following lemma lists explicit scenarios under which condition (2.28) of The-
orem 2.7 holds.

Lemma 5.1. Let S > 2. If one of the following conditions holds:
(i)Y >8S +5, Ly >8S +5;
2
(3)Y >9S5 +3, Lo > (95 + 3)5;
then condition (2.28) of Theorem 2.7 is satisfied, i.e.

logY > .
log Lo ogY >85+3
Proof. The lemma follows from the fact that the function ¢ — t—%( logt is increasing
for t 2 to.

IfY > 85 +5 and log(85 + 5)/log Ly < 1, condition (2.28) follows. This proves
(1).
To prove (ii), take Y > 95 + 3 and note that (2.28) will hold if

2
1 > 0. 1
log Lg 0g(9S +3) >0 (5.1)
O

Proof of Theorem 2.4. We take p = %d, S=4and Y =95+ 3 = 39 in Theo-
rem 2.7, so we satisfy (2.31), and obtain (2.28) from Lemma 5.1 (ii) if Ly > 6.

(& -1
Given Ly > max {6,39, nr [(5+t)d] }, Ly € 6N, we define sy by

(39Lg)*~ (397 — max {16-60%Qz,1} (5.2)
> max{16-234d(%07)bdQ1,1}, (5.3)

s0 so > (3 +b) d and (2.29) is satisfied for s > so. We also define 8y > so by (2.32)
with s = sp; note that Dz is defined in (2.18) so

\Y

5
L < DyL(F (5.4)
Thus condition (2.17) in Theorem 2.4 then implies
1
P{”FO,LRO,L(EO)XO,L/3I|O,L < m} > 1- 323 (5.5)

>1-605(113)" 54> 1— (25(39,5)) "1,

and hence condition (2.33) in Theorem 2.7 holds for some 6 > 6y, so Theorem 2.4
follows from Theorem 2.7. O

Proof of Theorem 2.5. We take S = 4 and Y = 85 + 5 = 37 in Theorem 2.7;
condition (2.27) holds for Ly > 37 by Lemma 5.1(i). We will use (see (2.27))

10754
120 °

B(37,5) < (5.6)
Given s > bd, we set p = 3(s — bd) and

2
107d s—bd 1 2 1
£ = max {39, 37,37% (6 : ) 57 (16 2224Q7) =" 1y i} <L, (57

0s
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where £ is as in (2.19). . Conditions (2.29) and (2.30) of Theorem 2.7 are satisfied
for Lo > L' by its definition.

Now set 8y > s (recall vz > 1) by L = 90942(37Ly)?, i.e., by (2.32). Then
condition (2.20) is that same as

1
P{”FO,LRO,L(EO)XO,L/?)||0,L < m} >1- 3237 (5.8)

>1-60%(107)"% > 1 — (28(37,5)) "7,

and hence condition (2.33) in Theorem 2.7 holds for some 6 > 6y, so Theorem 2.5
follows from Theorem 2.7. O

6. PROOF OF THEOREM 2.7

Theorem 2.7 is a refinement of [GK1, Theorem 5.1], the main difference are the
explicit conditions.

Proof of Theorem 2.7. We proceed as in the proof of [GK1, Theorem 5.1]. We

start by picking Eg € Z, p > 0, S > 2 with S € N, s > p+ bd, 0 > 6y, where

6o is defined by condition (2.32) (note 8 > s), Y > 85 + 5, Y odd, and scales
1

L > max {6, 30, n?} with L € 6N. We set

pr. = P{AL(0) is not (6, Ey)-suitable}. (6.1)

The proof proceeds by induction. For the induction step, let £ € 6N, ¢ >
1
max {6,3@, nr° }, and L = Y{. We estimate py, from p; as in [GK1, (Eq. (5.22)],

but being slightly more careful in our use of the Wegner estimate (2.9), obtaining

9\ b
pr < BY,S+D)pitt+Qr|S (7‘2; ) (6Y)? + 1| LYL~*
s d (1S +2)% iy 1
< BY,S+1)p, i +1QIS(3Y)WL + +pﬁ (6.2)
11
< ﬁ(KS+1)pf+l+§E7 (6.3)

where 3(Y, S) is as in (2.27). (Note that (2.27) is a slightly better estimate than
[GK1, (Eq. (5.20)].) To obtain (6.3) we assume

(78 + 2)d

s—bd—p d+2
(Y'Lo) > 277°Qz3 (3y)(6-1)d

(6.4)

which is exactly condition (2.29) in Theorem 2.7.
As in the proof of [GK1, Theorem 5.1], we next must satisfy [GK1, (Eq. (5.24)].
i.e., we must show that

[vz(78 + 2)?L*][yz3% %] < 1, (6.5)
which follows if
Ly ° > 473478 + 2)%Y, (6.6)
which is true if 6 > 6y, where 6, is defined by condition (2.32).
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Next, we define N(Y) as in [GK1, (Eq. (5.26)], note that since we specified
Y > 85 + 5, we have

N(Y)=Y -85—1>4. (6.7)
We now need to satisfy [GK1, (Eq. (5.27)]:
yd [759 ] L' < 5 (6.8)
ie.,
(37, )Ny sH+0+d o pp(N(V)=1)—s (6.9)

But (6.9) is automatically fulfilled for any £ > Ly > 6 in view of condition (2.28).
First note that § > s and N(Y) > 4 imply that §(N(Y) —1) —s > 0. As a
consequence (6.9) certainly holds if

6
N1
<°T > (3%) VY4V Lo)*. (6.10)
Second, we always have
N(Y)-1
Ly T Ly, (6.11)

provided N(Y') > (2log Y/ log Lo) + 2, which is exactly (2.28). Thus plugging (6.6)
(which is the same as (2.32)) into (6.10) leads to

IN()-1 o N(Y) N(Y)
o 2 (L8) 7 2 (i3IS + (VL))

v

(3d'YI) N(Y) Yd(YLo)S,

where we used N(Y') > 2 and s > d. Thus we have (6.10), and hence (6.8).
We now set Lyt1 =Y Lg, k=0,1,2,---, pp = pr,. It follows from (6.3) that

1 __
i1 < B(Y, S+ 1)pi T+ 5L,Cf1 for k=0,1,2,.... (6.12)
If condition (2.30) holds, we may finish the proof as in [GK1]. If py < L., then
1 1
Pt < BY,5+1) +
LI(CS+1)11 2L£_|_1
28(Y,S+1)Y? 1 1
L(()SH)p 2Lﬁ+1 2LZ+1
1
< (6.13)
LRy’
where we used (2.30). If not, we must have pg 1 > L, ¥, for k =0,1,2,... ,n, so
(6.12) implies
1
5L,;j‘jl <BY, S+ 1)p Tt for k=0,1,2,... ,n, (6.14)

which we plug back into (6.12) to get
et < 28(Y, S+ 1)pg ! for k=0,1,2,...,n. (6.15)



EXPLICIT FINITE VOLUME CRITERIA FOR LOCALIZATION 23

Hence
1 1 PN CE2 Vit
Y(Tl)i”Lg <pPnt1 < (28(Y,8+1))" s ((2,8(}/, S+1)) SPO) . (6.16)
If condition (2.33) holds, i.e.,
po < (2B(Y,8 +1))7%, (6.17)

we get a contradiction for n large, uniformly in Ly > 6, which finishes the proof.
If If condition (2.30) does not hold, we work with the scale L; = Y Ly, instead
of Lg. That provides an extra term in Y that will supply the needed control
uniformly in Lo > 6. The price we pay is expressed in condition (2.31): p > d and
5> (p+d)/(p—d).
We now suppose condition (2.31) holds. If py < L, ” for some k > 1, we have

1
< Y, 1
pey1 < B, S+ )Ll(cs+1)p + 2L£+1
Yr 1 1
< 2860,84+1)——=——+-—5— (6.18)
, LiP 2Ly,  2L%,
1
< 5 (6.19)
Ly’
since p >d and S > %. Indeed, in this case we have
Y? (3Y)(5+hd  yp
Y, 1)— < 2 .2

1

2 3(S+1)d y (S+1)d+p 3d

d
3
2 y(ptd)—S(p—d) e
- 65r8! vor = QSdY = (4) <1,

where we also used Ly > 6 and S > 2. Otherwise, we must have py; > L,;’jl
for k = 1,2,...,n, so it follows from (6.12) that B(Y,S + 1)p ™' > %L,:fl for
k=1,2,...,n,so we again get (6.14) and (6.15), but we start from L; instead of
Ly, so instead of (6.16) we get

_1 1\ S+
Y(TW’L{; <pnt1 S (28(Y,S+1))75 ((Q,B(Y, S+1)) spl) . (6.21)

We will get a contradiction for large n, uniformly in Ly > 6, if we have
(28(Y, S +1))5p; < 1. (6.22)

In other terms, we need condition (6.17) but with p; instead of py. Thus we need
to estimate p; in terms of pg. Note that (6.12) holds for £ = 0 as well, so

1
< B(Y, DpStl 4 ——. 6.23
pl_ﬁ( 7S+ )p() +2(YLO)p ( )
Hence (6.22) is certainly true if
26(Y, S + 1))
2%5(1/, S+ 1)%1705*"1 + M <1 (6.24)

2(Y Lo)?
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for all Lo > 6. Since the first term on the right hand side of (6.24) is < 1 by (6.17),
i.e., condition (2.33), it suffices to show that the second term is also < I, which
can be seen as follows:
1
28(Y,S+1))5  [(2B(Y,8+1)\*
(YLo)? (YLy)sp

using (6.20). Hence (6.22) holds, so we get in (6.21) a contradiction for large n.
The contradictions to either (6.16) or (6.21) happen at some large n, how large
depending only on d,p,Y, S and Lg. Thus there is K = K(d,p,Y, S, Lg) such that
pr < L. * for all k > K.
That Ey € Xpr54 now follows from [GK1]. O

7. PROOF OF THEOREM 2.6

Theorem 2.6 is a refinement of [GK1, Theorem 5.2], again the the main difference
being the explicit conditions.

Proof of Theorem 2.6. We proceed as in the proof of [GK1, Theorem 5.2] (see [GK1,
Section 5.4]), where we fix S = 3 and take a = 1+ z% € (L, 1+ ;F55)- We prove
(2.24), note that (2.23) is easier and may be proven in a similar way.

We start by deriving from (2.22) the initial step of the inductive process, i.e.,

4
P |:R (%,LO,I,m,y)] Z 1-— ﬁ (7.1)
0

for all z,y € Z* with |z — y| > Lo + ¢, which is just (2.24) with ¥ = 0 and ™2
substituted for 2. To do that, we recall that

4
Ar(z) is (6, E)-suitable <= Ap(z) is (201°%L,E)—regu1ar. (7.2)
As in [GK1, p. 440], we set
1 mqg L L
52 = (52(m0,L0,s) = W [67_2Q_2Q - eimo_gqil (7.3)

and I(d2) = (Eo — d2, Eo +92) NZ. Using (2.22), Assumption W with n = Ly °, and
requiring

1

Lo > Q7 7™, (7.4)
obtain the equivalent to [GK1, Eq (5.37)]:
P{for every E € I(d2), AL,(0) is (52, E)-regular} (7.5)

]. bd— 2
>1— ——QzL)y* *>1—- —.
- Lg QI() = Lg

Using Assumption IAD, (7.1) follows from (7.5).

For reasons that will become clear later we will work with a smaller open interval
I, with Ey € I C Z, defined as

I=1(,)N{EeT; dist(B,R\T) > L;°}. (7.6)

The induction now proceeds as in [GK1]. The induction step goes from scale
£> Ly > 3p toscale L = [{*]gn, using (2.9) with n = L~°. We need to satisfy the
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equivalent to [GK1, Eq. (5.42)] (recall S = 3),
[yz(21 + 2)4L°] [vlsde—m%] <1, (7.7)
forall £ > Lo and " <m < 5%, mo = 29%. To do so, it suffices to require
69%420*°e~™08 < 1 for all £> Ly, (7.8)
ie.,
69992t Ly 2 1 forall ¢ >1. (7.9)
To satisfy the inequality at ¢ = 1 we require
6 > 4as and Lo > (69‘17%)# . (7.10)

Since log Ly > 1 as Ly > 6, it follows that (7.9) then holds for all ¢ > 1. Thus (7.7)
is satisfied if (7.10) holds.
Now, the equivalent of [GK1, Eq. (5.47)] is

L L L
> —-8.3-1==-25>—(1-500"("Y 11
Ne > 583 ; 5_6( 50 ) (7.11)
where we used, and hence require,
> Ly >12 (7.12)

Thus [GK1, Eq. (5.48)] follows with

50 (e —1)dlog? log(3%yz) aslogt
o> 1-— -2
moz m( ea—l) [ e—6 ¢ tu_e
50  4log(3%yz) 4(a—1)d+4as
> 1-— — — 7.13
= m [ ga—1 flog? gra—1 (7.13)
52 4log(3%7)
> 1-— - 7.14
= m[ 21" flogl (7.14)
where we used the fact that IOEL is decreasing in L for L > 3,1 < a < 2, d, s, and
0 > 4as.
Continuing as in [GK1], we construct the sequence of length scales Ly =
[L¥]en, k = 0,1,.... Applying the inductive step from scale Ly to scale Lyi1, we

obtain a decreasing sequence of masses mj, with my = %52, satisfying [GK1, Eq.
(5.48)] and (7.14) at scale Li. We thus need to verify [GK1, (5.51)], i.e.,

> m
0< ) (my —mpyy) < TO (7.15)
k=0

To do so, note that it follows from (7.14) that it suffices to show that for suitable
Lo we have

o 52 1
Y25 < g (7.16)
k=0 "k
> 4log(3%z) 1
= 7.17
Z 0log Ly, < ( )



26 FRANCOIS GERMINET AND ABEL KLEIN

Recall L, = Lg‘k. For (7.16), we use o* > ka, so

> 1 1 > 1
§ < E - - (7.18)
ak(a—1 -1 ala—1)k
k=0 LO ( ) Lg k=1 LO( )

1 n 1 < 2
L™ rgt(1-ggeh) T Lo

and hence (7.16) holds if we require
Lo > 4177 (7.19)

Since Y po o a~F = —2, (7.17) holds if we require

16
Lo > (3%y7) "D . (7.20)

Note that 417ﬁ > 4173 > 20 > 12 since a < %, and hence (7.12) follows from
(7.19).

We continue as in [GK1, Egs. (5.54)-(5.55)], with Iy =Z and Iy = I. We need
the equivalent of [GK1, Eq. (5.55)], i.e.,

6L\ 2
207Q7(3 + 1)? (7> LeFDdf=s < T (7.21)

so it suffices to establish the first inequality in

16 - 36dCIQI€2d(a71)+a(b+l)d S <€_°‘

s—2p
5 ) < —6)°P <L, (7.22)

Thus we must show that for all £ > L, we have

16 - 3692° 2P0 Qy < (s~ 2~ (b+8)d)42d (7.23)
which is true if

s>2p+(b+2)d>2p+(b+3)d—% (7.24)
and

Lo > (16 - 3692~ 01 Q) 5 7 @3 (7.25)

Using the definition of the interval I, given in (7.6), the equivalent of [GK1, Eq.
(5.56)] follows from (7.21). To ensure the equivalent of [GK1, Egs. (5.57)-(5.58)],

we need
s\ 4]
(Al e -
so it suffices to ensure
[9de2<a—1>di] ’ <1 foral £>1 (7.27)
@v| = per =0 ‘

ie.,

4.9% < gPrmop=2a=d forall > L. (7.28)
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Since 2p — ap — 2(a — 1)d = Ip by the definition of a, (7.28) follows from (7.19)
since
1

(4-9N7 = (4-9%) @ Derd < (4.94) @D < 4177 (7.29)

The desired conclusion (2.24) now follows as in [GK1]. The fact that I C Xyrga
now follows from (2.24) and [GK1, Theorem 3.4].

The exponential decay of the eigenfunctions given in (2.26) follows from (2.24)
as in [vDK, Theorem 2.3]. O
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