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ABSTRACT. We apply finite volume criteria for localization to random Schrédinger
operators. These provide explicit conditions, depending on the parameters of
the model, for starting the bootstrap multiscale analysis. The criteria are
used to study localization of Anderson Hamiltonians on the continuum at the
bottom of the spectrum at high disorder.

1. INTRODUCTION

In this article we illustrate the use (and need) of explicit finite volume crite-
ria for proving localization of waves in random media. We consider an Anderson
Hamiltonian in the continuum,

Hyy=—A+Vyee + AV, on L2(RY dz), (1.1)

where V., is a periodic potential with period 1 (by rescaling we can always take
the period to be one), A > 0 is the disorder parameter and the random potential
V., is of the form

Vo(z) = Z w; u(z — i), , (1.2)

iclzd
quZ

with g € Ny w = {w;; i € %Z‘i} a family of independent, identically distributed
random variables taking values in the bounded interval [M_, M, ], whose common
probability distribution has a bounded density g with ¢ > 0 near M_; u(z) a
measurable function with compact support, 0 < u € LP(R?,dz) with p € [1,00] if
d=lorM_>0,pe€ (% 00]ifd>2and M_ <0, and 0 < U_ < U(z) where
U(z) = Zie%zdu(x —1).

This model was studied by Combes and Hislop [CH1] and Kirsch [Ki] with M_ =
0 and V,er = 0, who proved that for any fixed energy E; > 0 we have Anderson
localization in the interval [0, E4] for sufficiently large disorder. (In this case the
almost-sure spectrum of H) , is [0, o0] for all A > 0.)

But the case M_ # 0 cannot be treated in the same way. If Ei" denotes the
bottom of the spectrum of Hj,,, we now have Ei)\nf — Foo as A — oo if M_20.
Thus even for a fixed interval at the bottom of the spectrum (i.e., of the form
(Bt Einf 1 6] with a fixed § > 0), both the constant in Wegner’s estimate and the
constant in the Simon-Lieb inequality increase as the disorder A increases, so as we
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increase A the initial length scale for the multiscale analysis also increases. Thus we
cannot fix a length scale and satisfy the initial condition for the multiscale analysis
at the disorder dependent energy interval by taking the disorder large enough; the
initial length scale is a moving target.

To deal with such difficulties, we developped in [GK4] explicit finite volume cri-
teria for proving localization in situations where the crucial quantities of the model
that enter the multiscale analysis (e.g., the constant in Wegner’s estimate, the con-
stant in the Simon-Lieb inequality) depend on the parameters of the model (e.g.,
the disorder parameter, the energy where localization is to be proven, the strength
of the magnetic field). The emphasis was on providing explicit conditions, depend-
ing on the various parameters of the model, for starting the bootstrap multiscale
analysis [GK1]. These criteria thus yield Anderson localization, strong dynamical
localization, SULE, etc. (See also [GK3] for a discussion of the consequences of
the bootstrap multiscale analysis; see [DRJLS] for a discussion of SULE.) These
criteria are reviewed in Section 2.

In Section 3 we apply our explicit criteria to Anderson Hamiltonians H) , as in
(1.1), proving localization at high disorder in an interval of size proportional to the
disorder at the bottom of the spectrum. To do so we derive explicit bounds on the
location of the bottom of the spectrum, Ei)\nf, as a function of the disorder A. (See
Theorem 3.1.) Using these bounds and our explicit criteria, we prove localization in
the interval [E, ERf + c)] for large disorder A, where c is a constant independent
of A. In addition, we show that for large disorder eigenfunctions with eigenvalues
in the interval [Ei*f, Ei*f + c)] decay exponentially with a rate > ¢/+v/\ for some
constant ¢’. (See Theorem 3.2.) We had previously obtained such results when
M_ =0 and u bounded [GK4].

Localization for continuous random operators has been usually proven by a mul-
tiscale analysis. (But note that the fractional moment method [AM, ASFH] has just
been extended to the continuum [AENSS].) The multiscale analysis is a technique,
initially developed by Frohlich and Spencer [FS] and Fréhlich, Martinelli, Spencer
and Scoppolla [FMSS], and simplified by von Dreifus [vD] and von Dreifus and Klein
[vDK], for the purpose of proving Anderson localization. i.e., pure point spectrum
and exponential decay of eigenfunctions. (See also [HM, CKM, Sp, KLS, vDK2, K,
CH1, Klol, FK1, FK2, KSS1, KSS2, CHT, FLM, Wa, St, GK1, U, KK1, KK2].)
It was later shown to also yield dynamical localization (non spreading of the wave
packets) [GDB, Ge, DS, GK1]. Explicit finite volume criteria for applying the
multiscale analysis were provided in [GK4].

2. EXPLICIT FINITE VOLUME CRITERIA FOR LOCALIZATION

In this article a random Schrédinger operator will be a random operator of the
form

H,=-A+V, on L%R? dzx), (2.1)

where A is the d-dimensional Laplacian operator and V,, is a random potential,
i.e., {Vu(z); = € R?} is a real valued measurable process on a complete probability
space (2, F,P), such that:

(): V, = VY + V¥, where {V{?(z); = € R4}, i = 1,2, are real valued
measurable processes on (2, F,P) such that for P-a.e. w we have:
(1): 0 < V&Y e LL (R?,dz).
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(i2): Vi is relatively form-bounded with respect to —A with relative bound
<1
(ii): There is an ergodic family {r,; y € Z?} of measure preserving transfor-
mations on (2, F,P) such that V‘,-(;Z,(.’L') = V¥ —y) for i = 1,2 and all
y € 7.
(iii): There exists ¢ > 0 such that for any bounded subsets B;, By of R? with
dist(B1,B2) > o the processes {V,(z); ¢ € B:1} and {V,,(z); = € By} are
independent.

It follows, using the ergodicity, that there are nonnegative constants ©; < 1 and
©, such that for all ) € D(V) we have

‘<¢,Vu§2)¢>‘ < 04||VY|2 + Oa||9|? for Pae. w), (2.2)
and hence H,, is defined as a semi-bounded self-adjoint operator for P-a.e. w, with
H, > -0y for P-ae w. (2.3)

Moreover, H, is a random operator, i.e., the mappings w — f(H,,) are strongly
measurable for all bounded measurable functions on R. Thus there exists a nonran-
dom set ¥ such that o(H,) = ¥ with probability one, and that the decomposition
of o(H,) into pure point spectrum, absolutely continuous spectrum, and singular
continuous spectrum is also independent of the choice of w with probability one.
(See [KM]and the discussion in [GK3].)

In this article we are concerned with localization, from both the spectral and
dynamical point of views.

Definition 2.1. The random Schrédinger operator H,, exhibits exponential local-
ization in the open interval I if it has pure point spectrum in I, and for P-a.e. w
the eigenfunctions of H,, with eigenvalue in I decay exponentially in the L?-sense.
The exponential localization region ¥Xg1, for the random Schrédinger operator H,
1s the set of E € ¥ for which there exists some open interval I > E such that H,
ezhibits exponential localization in I.

Definition 2.2. The random Schrodinger operator H,, exhibits strong HS-dynamical
localization in the open interval I if for all 0 < X € C°° with support in I we have

. . 2
E{sup H(X)Ee_”H“X(Hw)XOHQ} <oo foralln>0, (2.4)
teR

where (X) denotes the operator given by multiplication by the function (z) =
v/1+ |z|?, and x. is the characteristic function of the cube of side 1 centered at
xz € RE. The strong insulator region g1 for the random Schrédinger operator H.,
is the set of E € X2 for which there exists some open interval I 5 E such that H,
ezhibits strong HS-dynamical localization in I.

To discuss criteria for localization, we need to consider the restriction of the
random Schrédinger operator H,, to a finite box. Throughout this paper we use
the sup norm in R¢:

|z] = |#|oo = max{|z;|, ¢ =1,...,d}.
By Ap(z) we denote the open box (or cube) of side L > 0:
Ap(z)={y eRY; |y —z|< £}, (2:5)
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and by Az (x) the closed box. The characteristic function of a set A C R? is denoted
by xa; we set

Xa,L = XAp(z)» With Xz = Xz,1- (2.6)

In this article we will take bozes centered at sites x € Z* with side L € 2N. For
such a box we set

Ty = Z Xy, where Yp(z)={yeZ% |y—z|=%-1}. (2.7)
yETL(2)

The finite volume random Schrédinger operator H,, . 1, is defined as the restric-
tion of H,, either to the open box Ar(z) with Dirichlet boundary condition, or
to the closed box Ay (z) with periodic boundary condition. (We consistently work
with either Dirichlet or periodic boundary condition.) To see that H, . 1 is well
defined as a semi-bounded self-adjoint operator on L?(Ar(z),dy), note that if V1,
is the gradient operator restricted to either to the open box Ar(x) with Dirichlet
boundary condition, or to the closed box Ar(z) with periodic boundary condition,
then it follows from (2.2) that for all ¥y € D(V,,1) we have

‘<w, V52>w>‘ < 61||Va.r9]| + Oa[9||? for P-ae. w. (2.8)

(For Dirichlet boundary condition (2.8) follows immediately from (2.2) with the
same ©; and O, as in (2.2). For periodic boundary condition (2.8) follows from
(2.2) by using a smooth partition of the identity on the torus, with the same 0,
but with ©, enlarged by a finite constant depending only on the dimension d, so
we can modify O3 in (2.2) so (2.2) and (2.8) hold with the same ©; and ©; for all
boxes Ar(z).) We write Ry, ;. 1,(2) = (Hy,z,r — 2) ! for the resolvent.

A random Schrédinger operator satisfies all the requirements for the bootstrap
multiscale analysis of [GK1] with the possible exception of a Wegner estimate, i.e.,
it satisfies Assumptions SLI, EDI, IAD, NE, and SGEE of [GK1] in any bounded
interval [GK3, Theorem A.1]. We refer to [GK1, GK3] for a discussion of all these
assumptions. For our purposes [GK3, Theorem A.l] can be restated as follows.
(Note that (2.12) below is given in [GK3, Eq. (A.7)].)

Theorem 2.3. Let H, be a random Schrédinger operator. Then H,, satisfies As-
sumptions SLI, EDI, IAD, NE, and SGEE of [GK1]. In particular, Assumptions
SLI and NE hold in the folowing form:

SLI: Given L,¢', 0" € 2N, xz,y,y' € Z¢ with A (y) C Ap_3(y') and Ap(y') C
AL 3(z), then for P-a.e. w, if E ¢ 0(H, 5.1)Uo(Heyy ), we have

”Fz,LRw,w,L(E)Xy,é”” <"E ”Fy’,l’Rw,y’,Z’ (E)Xy,f”H ||Fac,LRw,w,L(E)Fy’,l’” , (2.9)

with
- 6\/
In the special case ©1 = 0 we may take
vg = 6V2d /max{E, 0} + © + 50d . (2.11)
NE: For P-a.e. w and all E € R we have
tr {X( o,B)(Huw,z,L } < CgL? forallz € Z% and L € 2N, (2.12)

_\/max{E,0} + @, 4 Uteu100d (2.10)
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with
d
Op = ca <ma‘x{1E_+®(?2 ’0}> ., (2.13)
cq being a finite constant depending on d only.
Given a bounded interval I we set
1= SUpE Cr= sup Ce =Csuppe, F - (2.14)

Note that Assumption EDI also holds at an energy E with the same constant vg
as in (2.10) and (2.11).

In this article a Wegner estimate in an open interval (Assumption W in [GK1])
will be an explicit hypothesis.

Definition 2.4. The random Schrddinger operator H,, satisfies a Wegner estimate
in an open interval I if for some b > 1 there exists a constant Qz, such that

P{dist(c(Hy 1), E) < n} < QrnL* , (2.15)

forall E€Z,0<n<1,z€Z and L € 2N. The Wegner region Sw for the
random Schrédinger operator H,, is the set of E € X for which there exists some
open interval I > E such that H,, satisfies a Wegner estimate in I.

Wegner estimates have been proven for a large variety of random Schrédinger
operators (e.g., [We, HM, CKM, CHI, Klol, CHM, Ki, KSS1, St, CHN, CHKN,
HK]), under some assumptions on the random potentials. Usually b = 1 or 2. In this
paper, we shall use (2.15) as stated, the modifications in our methods required for
the other forms of (2.15) being obvious. (For a discussion of possible modifications
see [GK1, Remark 2.4].)

We will look for localization by studying the decay of the finite volume resolvent
from the center of a box A (z) to its boundary as measured by

ITz,rRu,z,1.(E)Xa,1/3ll - (2.16)

We use the convention that ||T'y, 1 Ru,z,0.(E)Xa,r/3l| = o0 if E € 0(Hy e,1)-
We start with two deterministic (i.e., for a given w, which is omitted from the
notation) definitions.

Definition 2.5. Given § > 0, E € R, z € Z?%, and L € 6N, we say that the box
Ar(z) is (0, E)-suitable if
1
HFE,LRE,L(E)Xz,L/3” < 70 - (2.17)

Definition 2.6. Given m > 0, E € R, ¢ € Z?, and L € 6N, we say that the box
Ar(z) is (m, E)-regular if

Tz, 2 Re,1.(B)Xa,1ys]] < e™™%. (2.18)

We define the multiscale analysis region Xysa C ¥ by requiring the conclusions
of the bootstrap multiscale analysis [GK1, Theorem 3.4]. We use the notation

[K]eny = max{L € 6N; L < K}. (2.19)
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Definition 2.7. The multiscale analysis region Xysa for the random Schrédinger
operator H,, is the set of E € Xw for which there exists some open interval I 3 E
such that, given any ¢, 0 < ¢ <1, and o, 1 < o < (™1, there is a length scale Lg
and a mass m¢ > 0, so if we set Ly = [L¥]en, k =0,1,..., we have
P {R(m¢,Li, I, z,y)} > 1—e (2.20)
for allk =0,1,..., and z,y € Z* with |z — y| > Li + o0, where
R(vaaIaz,y) = (221)
{for every E' € I, either Ar(z) or Ar(y) is (m, E')-regular} .

On Xysa we have all desired properties of localization, including exponential lo-
calization and strong Hilbert-Schmidt dynamical localization [GK1]. In particular,

Ymsa C YgL N Xgr - (2.22)
On the other hand, we proved in [GK3| that
YsiNYw C Lyvsa (2.23)

and hence we have:
Theorem 2.8. Let H, be a random Schriodinger operator. Then
Ymsa = 2s1 N Yw =Yg NYs1 N Xw - (224)

In [GK4] we gave explicit finite volume criteria for E € Yyga. The first criterion
works for a prescribed value of the initial length scale Ly [GK4, Theorem 2.4].

Theorem 2.9. Let H, be a random Schridinger operator. Fix a length scale Lo €
6N, Ly > max{6,30,} . Let Ey € Tw, with H, satisfying a Wegner estimate in
the open bounded interval T > Ey, and suppose

(§+b)d 2
P DzLy IT0,20Ruw,0,20 (E0)Xo0,0/3ll <1p >1— 553, (2.25)
with
Dz = 39CY9 max {16 - 609Qz, 1} 72 (2.26)
Then Ey € YMSA -

The second criterion is for large initial length scale Ly and weak initial decay:
any rate that is faster than the volume (if b = 1 in Wegner) or the volume squared
(if b = 2) is allowed [GK4, Theorem 2.5]. It provides a precise estimate on how
large Ly has to be, depending on the parameters ()7 and yz of the model, and on
the prescribed rate of decay of the resolvent.

Theorem 2.10. Let H, be a random Schrédinger operator. Let Ey € Y, with
H,, satisfing a Wegner estimate in the open bounded interval T > Ey. Fix s > bd,
and set

5a 2
£ — max {39, 42,3 (1027") L (16-607Q7) } . (2.27)
Suppose that for some Ly > L, Ly € 6N, we have
P {90%77(37Lo)*||To,z R0,z (Bo)Xo,zo/3ll <1} > 1 — g8 - (2:28)

Then Eg € XMSA -
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The next criterion is an analog of Theorem 2.10 but for the second multiscale
analysis of the bootstrap scheme of [GK1], i.e., for the multiscale analysis with
exponential decay of the resolvent and polynomial decay of the probabilities as in
von Dreifus and Klein [vDK], modified as in Figotin and Klein [FK1, Theorem 32]
to allow the mass in the starting hypotheses to decrease as the initial length scale
increases [GK4, Theorem 2.6].

Theorem 2.11 gives an estimate of the exponential rate of decay of the eigen-
functions in terms of the constants of the problems; the price is paid in stronger
hypotheses than Theorem 2.10. If the probability estimate in the initial length scale
is sufficiently good, one may use Theorem 2.11 to start the bootstrap multiscale
analysis, instead of applying first Theorem 2.9 or Theorem 2.10 and then bootstrap-
ping to Theorem 2.11 to obtain the exponential rate of decay of eigenfunctions.

Theorem 2.11. Let H, be a random Schrédinger operator. Let Ey € Y, with
H, satisfing a Wegner estimate in the open bounded interval Z > Ey. Fiz p > 0,
o= 1+p1;%, s>2p+ (b+2)d, and 0 > 4as, and set

1
L = max {3@, 417ﬁ,dist(Eo, R\Z)~ : Q™" (2.29)
1 4 _16a__
(16 . 36d2872pCIQI) a(s—2p—(b+2)d) , (69d,y%) 6—4as , (3d,yl_) 0(a—1) } R

If for some Ly > L, Ly € 6N, we have

1

P{Ar,(0) is (6, Eo)-suitable} > 1 — 7 (2.30)

then there exists an open interval I = 1(0,s, Ly), with Ey € I C I, such that if we

loioL°, and Lgy1 = [Len, £ =0,1,..., we have

set mg = 260

P{AL,(0) is ("3, E)-regular} > 1 — Liz forall E€l, (2.31)
and
P [R(™, Ly, I, z,y)] > 1— Liip forz,y e Z® |Jx—y| > Lr+o0, (2.32)
for allk =0,1,..., where
R(m, L,I,z,y) = (2.33)

{for every E € I, either Ar(z) or AL(y) is (m, E)-regular} .

Moreover,

(i): INY C YMmsA -
(ii): For almost every w, an eigenfunction ¢, g of H., with eigenvalue E € I

decays exponentially (in the L?-sense) with a rate > g%, i.e.,

1 2Pw log L
lim inf — 08 |[Xow, Bl > blog Lo .

2.34
|z|—>o00 |LL‘| - 2L ( )
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3. ANDERSON HAMILTONIANS

In this section we apply our explicit criteria to Anderson Hamiltonians in the
continuum. These are the most studied random Schrédinger operators in the con-
tinuum (e.g., [HM, CH1, Klo1l, CHM, Ki, KSS1, CHN, St, Klo2, GK4]).

In this article an Anderson Hamiltonian will be a random Schrédinger operator
of the form

H)\,w =-A + Vper + )\Vw ) (31)

where
(a): Vper is a periodic potential with period 1 (by rescaling we can always take
the period to be one), such that Ve = Vp(elr) + Vp(le) , with Vp(él, i = 1,2,
periodic with period one, 0 < Vp(;r) € Llloc(Rd,d:c), and Vp(e2r) relatively form-
bounded with respect to —A with relative bound < 1: there are nonnegative

constants Oper,1 < 1 and Oper,2 such that for all ¢ € D(V) we have

(8, Vi) < Opert [ T9I1? + Opera[?. (3.2)
(b):
Vo(z) = Z w; u(z — 1), (3.3)
ietzd
where
(b1): ge N.

(b2): w = {w;; 1€ %Zd} a family of independent, identically distributed
random variables taking values in the bounded interval [M_, M, ], whose
common probability distribution p has a bounded density g with g > 0
a.e. in [M_, M_ + a) for some a > 0.

(b3): u(x) is a real valued measurable function with compact support, say
suppu C A,(0), 0 < u € LP(R?,dz) with p € [1,00] if d = 1 or M_ > 0,
p€ (£,00]ifd>2and M_ <0, and 0 < U_ < U(z) where U(z) =
Zieézd u(z —1).

(c): A > 0is the disorder parameter.

H) is a random Schrédinger operator for each A > 0. (If M_ <0, V, is a
potential in Kato class for P-a.e. w (see [Si, Example E, p. 457]). Its nonrandom
spectrum will be denoted by ¥, i.e., ) = o(Hy,) for P-a.e. w. We let E*f
denote the bottom of the spectrum, i.e.,

B —infy,. (3.4)
Theorem 3.1. Let H) ,, be an Anderson Hamiltonian. Then
EXf =info(Hy ), (3.5)
where
Hym_ = Hj (4, —m_; iclzd} = A4+ Voer +AM_U. (3.6)

We have the upper bound

ENf < / Vper(z) dz + AM_ / U(z)dz, (3.7)
A1(0) A1(0)
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so, in particular,
Ef < / Voer(@)dz + AM_U_ if M_ < 0. (3.8)
A1(0)
Moreover, if M_ < 0 we have
2
(v, (G2 +AM_U) 6)| < 50+ Opar) VU + (Operz + BAZ2 ) [6]]> (3.9)
for all ¢ € D(V), where

2p 2 2p—d
B = (Cagop M_|l[ullp)* | 75— ; (3.10)
1 eper 1

with Cq,q,0,p @ constant depending only on the indicated parameters. Thus we have

the lower bound
inf { _eper,z + AM_U_ ’Lf M_ Z 0
E)\ > _2p X
_eper,z - ,8)\2p_d ’Lf M_<0
We give a proof for Theorem 3.1 in Appendix A.

(3.11)

Theorem 3.2. Let H) ,, be an Anderson Hamiltonian, and set

Lo = min{L € 6N; L > max{30,3(2+ Vd)}}. (3.12)
Then there exists X*, depending only on d, U_, ||9||ec, 0, P, ||tllp, M—, Oper,1, and
Oper,2, such that for any A > \* we have

(B, BY + eA] N 25 C Suisa with ¢ = gggrosamar= - (3.13)

Moreover there exists ¢ > 0, depending on d, U_, ||g||lco, and o, but not on A > \*,
such that if A > X*, then for a.e. w, if pxu,E 5 an eigenfunction of Hy , with
eigenvalue E € [E&“f, E;\nf + c)\] , then

liminf — 28 IXe?ull S 5 (3.14)
Remark 3.3. In the weak disorder regime, localization of Anderson Hamiltonians
in an interval of size A at the bottom of the spectrum has been proved by Klopp
[Klo2] using Lifschitz tails. As pointed out in [Klo2, p. 728|, in this case the
minimal length scale for the initial length scale estimate grows polynomially in %,
since the constant in the Wegner estimate is proportional to %, but, because of the
strong estimate given in [Klo2, Proposition 3.2], the usual proofs of the multiscale
analysis may be modified to yield localization in this situation. Theorem 2.11 may
be applied directly with Klopp’s estimates to prove localization in this weak disorder
regime.

Proof of Theorem 3.2. We follow the same strategy as in [GK1, Proof of Theorem
3.4], but taking into account the fact that ERf — +oo as A — oo if M_ >0, with
|Einf| growing polynomially in A.

The finite volume operators H) , ;1. are taken as the restriction of H) ,,, either to
the open box Az (z) with Dirichlet boundary condition, or to the closed box Az ()
with periodic boundary condition. The random potential Vjer + AV, satisfies the
finite volume condition (2.8) with, if M_ > 0,

9)\,1 = eper,l ) (315)
O)\,Q - eper,Q + Cd (316)
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and, if M_ < 0, in view of (3.9),
6)\ 1 = %(1 + G)per,l) ’ (317)

6)\,2 = 6per,2 + ﬂ)\zi—fd +c¢a, (3.18)

where cg is a constant depending only on d (see the remark following (2.8); ¢4 =0
for Dirichlet boundary coundition). For a given bounded interval Z, the constants
v,z and Cj z can then be read from (2.14), (2.10) and (2.13).

The Wegner estimate (2.15) can be derived as in [Ki, Proposition 1] or [FK1,
Theorem 2.3] with b= 2, nz =1, and

. C
Qxz =sup Qrg, withQx g = a9l (
EeT

d
max{E—l—@)\g—}—l,O} 2

’ 3.19

U , o (3.19)

1-06x1
with Cy a constant depending only on d.
We now derive an elementary probability estimate: if 6 > 0 and Ly € 2N, we
have
P{w; > M_ 4 for alli € AL (0)} (3.20)
= 1-P{w; € [M_,M_ + 4] for somei € Ar,(0)}
> 1—llglleo LS

We fix § and Lg, and set

Ky = 16U_), (3.21)
Ey, = EY41K,. (3.22)
It follows that
P{Ax} > 1—6]|gllo L , (3.23)
where A, denotes the event
Ay = {info(Hy e 1,) > ED +2K,}. (3.24)

We now use Theorem 2.9. To maximize §, we need to minimize Lg; hence we
pick Lo as in (3.12) and choose § by matching the right hand sides of (3.23) and
(2.25), i.e.,

Sllglloo L = 3ea - (3.25)
If w € Ay, it follows that
dist(F,0(Hx 1)) > Ky for any E € [EY, E)\], (3.26)

so we can use the Combes-Thomas estimate to get the decay of the resolvent for
any F € [Ei)‘nf,EA]. The exact dependency of the exponential decay rate in the
Combes-Thomas estimate in terms of the energy parameter and the distance to the
spectrum is crucial in our argument, since we deal with large energies and large
distances from the spectrum. Such a precise estimate is provided in [GK2, Eq. (19)
in Theorem 1], and adapted to the finite volume case in [GK1, Proof of Theorem
3.4]: In a box AL (0), with either Dirichlet or periodic boundary condition, the
same estimates as in [GK2, Eq. (19) in Theorem 1] hold for z,y € Az, 2(0)
(i.e., at a distance > 1 from the boundary) but the exponential rates of decay get
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divided by 1+ 2v/dLy. Thus, if w € A and E € [EPf, E,], we have that for any
z,y € Z2 N AL, (0) =2 N AL, »(0), with |z — y| > V/d,

-1
xe Baw,zo (E)xyll < 2 e VEER (142VALo) (la—vl=va) - (3.97)

Summing over the support of I'z, and of xy,/3, noting that if z € Ar,/3(0), y €
T1,(0) we have |z —y| > £2 — 1, and using (3.12) yields

—1
T 2o R, o (B)X1o/3ll < 24 LE4—1em VR (1+2VaLo) ™ (3.28)

We will show that (2.25) of Theorem 2.9 is satisfied for all E € [ER, E,] for
large disorder. Let Zy = (—©x 2 — 1, Ex + K — 1), we have, using (2.26), (2.14),
(2.10), (3.7), (3.15)-(3.18), (3.19), (3.21), and (3.28),

21b)d
Doz LMDy R o (B0 51 (3.29)
R
= 39°"max {16 - 60°Qx 1., 1} 73 2, L&’ 1T Lo Rrw, Lo (B)XLo/3l
< e eVA (3.30)
< 1, (3.31)
with
max {2 — 1,0} if M_ >0
= w4 o o , (3.32)
= a0}+m— ifM_ <0

where (3.30) holds for w € Ay with ¢; and ¢y constants depending only on d, U_,
llglloos @5 s |Jullps M—, Oper,1, and Oper 2 (note that we fized Ly and 6 in (3.12) and
(3.25)). We conclude that there exists A\*, depending only on d, U_, ||g||co, @, P,
||wllpy M—_, Oper.1, and Oper 2, such that we have (3.31) for all A > A* and w € A,.

Thus condition (2.25) holds for A > A\* and E € [EM E,] by (3.23), hence
Theorem 2.9 implies that [Ei)\nf, E\]NX\ C Xusa-

It remains to prove the estimate (3.14) on the the rate of the exponential decay
of the eigenfunctions with energies in [EX, E,]. To do so we use the criterion given
in Theorem 2.11. We start by defining 6, by

L% = 24 [24 1o VPR (142viLo) (3.33)

Then (3.28) says that for w € Ay the box Ar,(0) is (0, E)-suitable for any E €
[Eif) E,]. Moreover, it follows from (3.33) that

05 > coVA forall A > \*, (3.34)

where ¢y is some constant and \* is taken large enough (both depending only on
d, U-, ||9]lcc, and o).

As in [GK1, Proof of Theorem 3.4], we bootstrap from [GK4, Theorem 2.7] (of
which Theorem 2.9 is a special case) to Theorem 2.11. It follows, as in [GK4, Proof
of Theorem 3.1], that if we set Ly, = 39%¥Lg, k = 0,1,2, ..., where Ly is as in (3.12),
then for all A > A* we have

1
P{Ar, (0) is (0x, E)-suitable} > 1 — — , (3.35)
Li

for all E € [EY, E,] and k > K, where K = K(d, 0) < oo is a constant depending
only on d and p. A key fact is that K does not depend on .
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We now feed (3.35) into the hypotheses of Theorem 2.11. We have already fixed
p= %, and hence « is fixed. On the other hand for each A we have § = 0, as in
(3.33), and Qi z,, Cx z,, and 7 z, grow polynomially with A. To control £y as
given in (2.29) with all this dependence in A, we pick the remaining parameter, s, to
also depend on A by s) = log A\. By taking \* sufficiently large, as before depending
only on d, U_, ||9llcc, ©, P, ||tllp, M—, Oper,1, and Oper,2, and using (3.34), we can
also guarantee 0, > 4as) and sy > 2p + 4d for all A > A*. It follows from the
explicit form of (2.29) that

Loo=sup sup Ly(E)<oo, (3.36)
A>X* E€[EiR E,]

where £ (FE) is given by (2.29) with By = E, T =1),p = g, 0 =0, and s = s,.
Note that Lo, depends only on d, U_, ||g||ccs 0, P ||©]lp, M—, Oper,1, and Oper,2.
We now fix k to be that smallest k& > K such that Ly = 39¥Ly > L. It follows

from Theorem 2.11 that if A > A*, then for almost every w, the eigenfunctions
©rw,E With energy E € [EM E,] decay exponentially (in the L2-sense) with

IOg ”Xz(p)\,w,EH > 9>\ log Ln

lim inf — .
e 2] =T (3:37)
so (3.14) follows from (3.34). O

APPENDIX A. PROOF OF THEOREM 3.1

The identity (3.5) follows from ergodicity and hypothesis (b2), as in [KM, The-
orem 3]. Note that

Hy,=Hypm_+ A Z (wi — M_)u(z —1) with w; — M_ >0. (A1)
iezzd

To obtain the upper bound (3.7), let ¢ € C®(R?) with |j¢|z = 1, and set
on(z) = iz p(+x) for n € N; note [|pn|l2 = 1. Tt follows from (3.5) that

EX" < (on, Ha,m_on) (A.2)
= %(go, —Ap) + /Rd (Voer(nz) + AM_U(nz)) |p(z)|* dz .

Letting n — oo we get (3.7).

We now turn to (3.9) and the lower bound (3.11). The lower bound for M_ > 0
is obvious. For M_ < 0 it follows from (3.9), which will follow from the following
lemma.

Lemma A.1. Let W be a real valued measurable function on R? such that that
W € L2 (R4, dz), i.e.,

Wllp,u = sup [IxeWllp < o0, (A.3)
TcZe
with p € (%,oo] ifd>2, andp € [1,00] if d = 1. Then for every m > 0 we have
_o4d
(W, W) < Capm ™ % [Wlpu (IV9]* +m?[9]]%) for all g € D(V),  (A4)

where Cq,p, 1s a finite constant depending only on d and p.
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Proof. Tt suffices to prove

1
2

(A +m?) W] (~A +m?) T < Capm > E [ Wllpu,  (A)

or, equivalently,
[WIE (=8 +m?) " [W]E < Capm 5 [W ]y (A.6)
1

We recall (e.g., [GJ, Proposition 7.2.1]) that for m > 0 the resolvent (—A + m?)
has an integral kernel K, (z — y), such that

Kp(x) = ma2K; (max), (A7)
and
(o) eIzl fd=1
Cy (Infz|| +1)el*l ifd =2
0 < Kl(w) S C3 |x|71e7|$| lf d — 3 I (A.S)
Cylz| 42 e zlel ifd>4

where Cj is a constant depending only on the dimension. If p > g if d > 2, and
p>1if d =1, we have

_ d
[Kmll 2, < Capm™ **w, (A.9)

where Cgp, < oo depends only on d and p
If ¢ € L2(R%,dz), we have,

(0, Wh (=8 +m?) " Wike) = (v, WK« W[Ey) (A.10)
<Y (8 WK 5 W)
T, yeZ
< Y IWlpullEmll 2, Ixevll2lxy ¥z (A.11)
z,ycZe
< W lp,ul Kl 2 19113, (A.12)

where we used Holder’s and Young’s inequalities to get (A.11), and the Cauchy
inequality to obtain (A.12).
The estimate (A.6) follows. from (A.12) and (A.9). O

We can now prove (3.9). Note that there exists a finite constant cq 4, ,, depending
only on d and p, such that

1Ullp,u = lIxo Ullp < cag,ellullp < oo (A.13)
It thus follows from (A.4) that for all m > 0 we have
(1, AM_U%)| < aX (rrr?+%||w||2 +m%||¢||2) forall € D(V),  (A.14)
with
o = cdq, Cap |M—||ullp - (A.15)
To obtain (3.9), we choose m depending on A by
adm™5 = 1(1 = Oper) (A.16)
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ie.,
2a) %
(oA AT
m (1_@per71) , (A.17)

and we obtain
2

(6, AM_U)| < (1 — Oper1) [ V02 + BATZa |[5]]2 for all € D(V),  (A.18)
with

2p 2 2p—d
B = anta (7> . A19
1- @per,l ( )
The estimate (3.9) now follows from (3.2) and (A.18). O
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