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Abstract. We consider an ergodic Schrödinger operator with magnetic field
within the non-interacting particle approximation. Justifying the linear re-
sponse theory, a rigorous derivation of a Kubo formula for the electric con-
ductivity tensor within this context can be found in a recent work of Bouclet,
Germinet, Klein and Schenker [BoGKS]. If the Fermi level falls into a region of
localization, the well-known Kubo-Str̆eda formula for the quantum Hall con-
ductivity at zero temperature is recovered. In this review we go along the lines
of [BoGKS] but make a more systematic use of noncommutative Lp-spaces,
leading to a somewhat more transparent proof.
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1. Introduction

In [BoGKS] the authors consider an ergodic Schrödinger operator with magnetic
field, and give a controlled derivation of a Kubo formula for the electric conductiv-
ity tensor, validating the linear response theory within the noninteracting particle
approximation. For an adiabatically switched electric field, they then recover the
expected expression for the quantum Hall conductivity whenever the Fermi energy
lies either in a region of localization of the reference Hamiltonian or in a gap of the
spectrum.

2000 Mathematics Subject Classification. Primary 82B44; Secondary 47B80, 60H25.

1



2 NICOLAS DOMBROWSKI AND F. GERMINET

The aim of this paper is to provide a pedestrian derivation of [BoGKS]’s result
and to simplify their “mathematical apparatus” by resorting more systematically to
noncommutative Lp-spaces. We also state results for more general time dependent
electric fields, so that AC-conductivity is covered as well. That von Neumann
algebra and noncommutative integration play an important rôle in the context of
random Schrödinger operators involved with the quantum Hall effect goes back to
Bellissard, e.g. [B, BES, SB1, SB2].

The electric conductivity tensor is usually expressed in terms of a “Kubo for-
mula,” derived via formal linear response theory. In the context of disordered
media, where Anderson localization is expected (or proved), the electric conduc-
tivity has driven a lot of interest coming for several perspective. For time reversal
systems and at zero temperature, the vanishing of the direct conductivity is a
physically meaningful evidence of a localized regime [FS, AG]. Another direction
of interest is the connection between direct conductivity and the quantum Hall
effect [ThKNN, St, B, Ku, BES, AvSS, AG]. On an other hand the behaviour
of the alternative conductivity at small frequencies within the region of localiza-
tion is dictated by the celebrated Mott formula [MD] (see [KLP, KLM, KM] for
recent important developments). Connected to conductivities, current-current cor-
relations functions have recently droven a lot of attention as well (see [BH, CGH]
and references therein).

During the past two decades a few papers managed to shed some light on these
derivations from the mathematical point of view, e.g., [P, Ku, B, NB, AvSS, BES,
SB1, SB2, AG, Na, ES, CoJM, CoNP]. While a great amount of attention has been
brought to the derivation from a Kubo formula of conductivities (in particular of
the quantum Hall conductivity), and to the study of these conductivities, not much
has been done concerning a controlled derivation of the linear response and the
Kubo formula itself; only the recent papers [SB2, ES, BoGKS, CoJM, CoNP] deal
with this question.

In this note, the accent is put on the derivation of the linear response for which
we shall present the main elements of proof, along the lines of [BoGKS] but using
noncommutative integration. The required material is briefly presented or recalled
from [BoGKS]. Further details and extended proofs will be found in [Do]. We
start by describing the noncommutative Lp-spaces that are relevant in our context,
and we state the properties that we shall need (Section 2). In Section 3 we de-
fine magnetic random Schrödinger operators and perturbations of these by time
dependent electric fields, but in a suitable gauge where the electric field is given
by a time-dependent vector potential. We review from [BoGKS] the main tools
that enter the derivation of the linear response, in particular the time evolution
propagators. In Section 4 we compute rigorously the linear response of the system
forced by a time dependent electric field. We do it along the lines of [BoGKS]
but within the framework of the noncommutative Lp-spaces presented in Section 2.
The derivation is achieved in several steps. First we set up the Liouville equation
which describes the time evolution of the density matrix under the action of a time-
dependent electric field (Theorem 4.1). In a standard way, this evolution equation
can be written as an integral equation, the so-called Duhamel formula. Second, we
compute the net current per unit volume induced by the electric field and prove
that it is differentiable with respect to the electric field at zero field. This yields in
fair generality the desired Kubo formula for the electric conductivity tensor, for any
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non zero adiabatic parameter (Theorem 4.6 and Corollary 4.7). The adiabatic limit
is then performed in order to compute the direct / ac conductivity at zero temper-
ature (Theorem 4.8, Corollary 4.9 and Remark 4.11). In particular we recover the
expected expression for the quantum Hall conductivity, the Kubo-Str̆eda formula,
as in [B, BES]. At positive temperature, we note that, while the existence of the
electric conductivity measure can easily be derived from that Kubo formula [KM],
proving that the conductivity itself, i.e. its density, exists and is finite remains out
of reach.

Acknowledgement. We thank warmly Vladimir Georgescu for enlightening dis-
cussions on noncommutative integration, as well as A. Klein for useful comments.

2. Covariant measurable operators and noncommutative Lp-spaces

In this section we construct the noncommutative Lp-spaces that are relevant for
our analysis. We first recall the underlying Von Neumann alegbra of observables
and we equip it with the so called “trace per unit volume”. We refer to [D, Te] for
the material. We shall skip some details and proofs for which we also refer to [Do].

2.1. Observables. LetH be a separable Hilbert space (in our contextH = L2(Rd)).
Let Z be an abelian locally compact group and U = {Ua}a∈Z a unitary projective
representation of Z on H, i.e.

• UaUb = ξ(a, b)Ua+b, where ξ(a, b) ∈ C, |ξ(a, b)| = 1;
• Ue = 1;
• U∗a = U−1

a = ξ(a,−a)−1U−a.
Now we take a set of orthogonal projections on H , χ := {χa}a∈Z , Z → B(H).
Such that if a 6= b ⇒ χaχb = 0 and

∑
a∈Z χa =1. Furthermore one requires a

covariance relation or a stability relation of χ under U i.e UaχbU
∗
a = χa+b.

Next to this Hilbertian structure (representing the “physical” space), we consider
a probability space (Ω,F ,P) (representing the presence of the disorder) that is
ergodic under the action of a group τ = {τa}a∈Z , that is,

• ∀a ∈ Z, τa : Ω → Ω is a measure preserving isomorphism;
• ∀a, b ∈ Z, τa ◦ τb = τa+b;
• τe = 1 where e is the neutral element of Z and thus τ−1

a = τ−a, ∀a ∈ Z;
• If A ∈ F is invariant under τ , then P(A) = 0 or 1.

With these two structures at hand we define the Hilbert space

H̃ =
∫ ⊕

Ω

H dP(ω) := L2(Ω,P,H) ' H⊗ L2(Ω,P), (2.1)

equipped with the inner product

〈ϕ,ψ〉H̃ =
∫

Ω

〈ϕ(ω), ψ(ω)〉H dP(ω), ∀ϕ,ψ ∈ H̃2. (2.2)

We are interested in bounded operators on H̃ that are decomposable elements
A = (Aω)ω∈Ω, in the sense that they commute with the diagonal ones. Measur-
able operators are defined as decomposable operators such that for all measurable
vector’s field {ϕ(ω), ω ∈ Ω}, the set {A(ω)ϕ(ω), ω ∈ Ω} is measurable too. Mea-
surable decomposable operators are called essentially bounded if ω → ‖Aω‖L(H) is
a element of L∞(Ω,P). We set, for such A’s,

‖A‖L(H̃) = ‖A‖∞ = ess− supΩ‖A(ω)‖, (2.3)
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and define the following von Neumann algebra

K = L∞(Ω,P,L(H)) = {A : Ω → L(H), ‖A‖∞ <∞}. (2.4)

There exists an isometric isomorphism betwen K and decomposable operators on
L(H̃).

We shall work with observables of K that satisfy the so-called covariant property.

Definition 2.1. A ∈ K is covariant iff

UaA(ω)U?
a = A(τaω) ,∀a ∈ Z, ∀ω ∈ Ω. (2.5)

We set
K∞ = {A ∈ K, A is covariant}. (2.6)

If Ũa := Ua ⊗ τ(−a), and Ũ = (Ũa)a∈Z , we note that

K∞ = {A ∈ K, ∀a ∈ Z, [A, Ũa] = 0} (2.7)

= K ∩ (Ũ)′, (2.8)

so that K∞ is again a von Neumann algebra.

2.2. Noncommutative integration. The von Neumann algebra K∞ is equipped
with the faithfull, normal and semi-finite trace

T (A) := E{tr(χ0A(ω)χ0)}, (2.9)

where “tr” denotes the usual trace on the Hilbert space H. The trace T is called the
trace per unit volume, since by the Birkhoff Ergodic Theorem, whenever T (|A|) <
∞, one has

T (A) = lim
|ΛL|→∞

1
|ΛL|

tr(χΛL
AωχΛL

), (2.10)

where ΛL ⊂ Z and χΛL
=

∑
a∈ΛL

χa. There is a natural topology associated to
von Neumann algebras equipped with such a trace. It is defined by the following
basis of neighborhoods:

N(ε, δ) = {A ∈ K∞, ∃P ∈ Kproj
∞ , ‖AP‖∞ < ε , T (P⊥) < δ}, (2.11)

where Kproj
∞ denotes the set of projectors of K∞. It is a well known fact that

A ∈ N(ε, δ) ⇐⇒ T (χ]ε,∞[(|A|)) ≤ δ. (2.12)

As pointed out to us by V. Georgescu, this topology can also be generated by the
following Frechet-norm on K∞ [Geo]:

‖A‖T = inf
P∈Kproj

∞

max{‖AP‖∞, T (P⊥)}. (2.13)

Let us denote by M(K∞) the set of all T -measurable operators, namely the com-
pletion of K∞ with respect to this topology. It is a well established fact from
noncommutative integration that M(K∞) is a Hausdorff topological ∗-algebra.

Definition 2.2. A linear subspace E ⊆ H is called T -dense if, ∀δ ∈ R+, there
exists a projection P ∈ K∞ such that PH ⊆ E and T (P⊥) ≤ δ.

It turns out that any element A of M(K∞) can be represented as an (possibly
unbounded) operator, that we shall still denote by A, acting on H̃ with a domain
D(A) = {ϕ ∈ H̃, Aϕ ∈ H̃} that is T -densily defined. Then, adjoints, sums and
products of elements of M(K∞) are defined as usual adjoints, sums and products
of unbounded operators.
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For any 0 < p <∞, we set

Lp(K∞) := {x ∈ K∞, T (|x|p) <∞}
‖·‖p = {x ∈M(K∞), T (|x|p) <∞}, (2.14)

where the second equality is actually a theorem. For p ≥ 1, the spaces Lp(K∞) are
Banach spaces in which Lp,o(K∞) := Lp(K∞) ∩ K∞ are dense by definition. For
p = ∞, in analogy with the commutative case, we set L∞(K∞) = K∞.

Noncommutative Hölder inequalities hold: for any 0 <, p, q, r ≤ ∞ so that p−1 +
q−1 = r−1, if A ∈ Lp(K∞) and B ∈ Lq(K∞), then the product AB ∈ M(K∞)
belongs to Lr(K∞) with

‖AB‖r ≤ ‖A‖p‖B‖q. (2.15)
In particular, for all A ∈ L∞(K∞) and B ∈ Lp(K∞),

‖AB‖p ≤ ‖A‖∞‖B‖p and ‖BA‖p ≤ ‖A‖∞‖B‖p , (2.16)

so that Lp(K∞)-spaces are K∞ two-sided submodules of M(K∞). As another con-
sequence, bilinear forms Lp,o(K∞)×Lq,o(K∞) 3 (A,B) 7→ T (AB) ∈ C continuously
extends to bilinear maps defined on Lp(K∞)× Lq(K∞).

Lemma 2.3. Let A ∈ Lp(K∞), p ∈ [1,∞[ be given, and suppose T (AB) = 0 for
all B ∈ Lq(K∞), p−1 + q−1 = 1. Then A = 0.

The case p = 2 is of particular interest since L2(K∞) equipped with the sesquilin-
ear form 〈A,B〉L2 = T (A∗B) is a Hilbert space. The corresponding norm reads

‖A‖22 =
∫

Ω

tr(χ0A
∗
ωAωχ0)dP(ω) =

∫
Ω

‖Aωχ0‖22dP(ω). (2.17)

(Where ‖ · ‖2 denotes the Hilbert-Schmidt norm.) From the case p = 2, we can
derive the centraliy of the trace. Indeed, by covariance and using the centrality of
the usual trace, it follows that T (AB) = T (BA) whenever A,B ∈ K∞. By density
we get the following lemma.

Lemma 2.4. Let A ∈ Lp(K∞) and B ∈ Lq(K∞), p−1 + q−1 = 1 be given. Then
T (AB) = T (BA).

We shall also make use of the following observation.

Lemma 2.5. Let A ∈ Lp(K∞) and (Bn) a sequence of elements of K∞ that con-
verges strongly to B ∈ K∞. Then ABn converges to AB in Lp(K∞).

2.3. Commutators of measurable covariant operators. Let H be a decom-
posable (unbounded) operator affiliated to K∞ with domain D, and A ∈ M(K∞).
In particular H need not be T -measurable, i.e. in M(K∞). If there exists a T -
dense domain D′ such that AD′ ⊂ D, then HA is well defined, and if in addition
the product is T -measurable then we write HA ∈ M(K∞). Similarly, if D is T -
dense and the range of HD ⊂ D(A), then AH is well defined, and if in addition
the product is T -measurable then we write AH ∈M(K∞).

Definition 2.6. We define the following (generalized) commutators:
(i): If A ∈M (K∞) and B ∈ K∞,

[A,B] := AB −BA ∈M(K∞), [B,A] := −[A,B]. (2.18)

(ii): If A ∈ Lp(K∞), B ∈ Lq(K∞), p, q ≥ 1 such that p−1 + q−1 = 1 , then

[A,B] := AB −BA ∈ L1(K∞). (2.19)
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(iii): Let H be affiliated to K∞. If A ∈M(K∞) is such that HA and AH are
in M(K∞), then

[H,A] := HA−AH ∈M(K∞) . (2.20)

We shall need the following observations.

Lemma 2.7. 1) For any A ∈ Lp(K∞), B ∈ Lq(K∞), p, q ≥ 1, p−1 + q−1 = 1, and
Cω ∈ K∞, we have

T {[C,A]B} = T {C[A,B]} . (2.21)
2) For any A,B ∈ K∞ and C ∈ L1(K∞), we have

T {A[B,C]} = T {[A,B]C} . (2.22)

3) Let p, q ≥ 1 be such that p−1+q−1 = 1. For any A ∈ Lp(K∞), resp. B ∈ Lq(K∞),
such that [H,A] ∈ Lp(K∞), resp. [H,B] ∈ Lq(K∞), we have

T {[H,A]B} = −T {A[H,B]} . (2.23)

2.4. Differentiation. A ∗-derivation ∂ is a ∗-morphism defined on a dense sub-
algreba of K∞ and such that:

• ∂(AB) = ∂(A)B +A∂(B)
• ∂(A+ λB) = ∂(A) + λ∂(B)
• ∂(A?) = ∂(A)?

• [αa, ∂] = 0 in the sense that αa ◦ ∂(A) = ∂ ◦ αa(A) ∀a ∈ Z ,∀A ∈ K∞.
If ∂1, ..., ∂d are ∗-derivations we define a non-commutative gradient by ∇ :=

(∂1, ..., ∂d), densily defined on K∞. We define a non-commutative Sobolev space

W1,p(K∞) := {A ∈ Lp(K∞), ∇A ∈ Lp(K∞)}. (2.24)

3. The setting: Schrödinger operators and dynamics

In this section we describe our background operators and recall from [BoGKS] the
main properties we shall need in order to establish the Kubo formula, but within the
framework of noncommutative integration when relevant (i.e. in Subsection 3.2).

3.1. Magnetic Schrödinger operators and time-dependent operators.
Throughout this paper we shall consider Schrödinger operators of general form

H = H(A, V ) = (−i∇−A)2 + V on L2(Rd), (3.1)

where the magnetic potential A and the electric potential V satisfy the Leinfelder-
Simader conditions:

• A(x) ∈ L4
loc(Rd; Rd) with ∇ ·A(x) ∈ L2

loc(Rd).
• V (x) = V+(x) − V−(x) with V±(x) ∈ L2

loc(Rd), V±(x) ≥ 0, and V−(x)
relatively bounded with respect to ∆ with relative bound < 1, i.e., there
are 0 ≤ α < 1 and β ≥ 0 such that

‖V−ψ‖ ≤ α‖∆ψ‖+ β‖ψ‖ for all ψ ∈ D(∆). (3.2)

Leinfelder and Simader have shown that H(A, V ) is essentially self-adjoint on
C∞c (Rd) [LS, Theorem 3]. It has been checked in [BoGKS] that under these hy-
potheses H(A, V ) is bounded from below:

H(A, V ) ≥ − β

(1− α)
=: −γ + 1, so that H + γ ≥ 1. (3.3)
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We denote by xj the multiplication operator in L2(Rd) by the jth coordinate
xj , and x := (x1, · · ·xd). We want to implement the adiabatic switching of a
time dependent spatially uniform electric field Eη(t) · x = eηtE(t) · x between time
t = −∞ and time t = t0. Here η > 0 is the adiabatic parameter and we assume
that ∫ t0

−∞
eηt|E(t)|dt <∞. (3.4)

To do so we consider the time-dependent magnetic potential A(t) = A + Fη(t),
with Fη(t) =

∫ t

−∞Eη(s)ds. In other terms, the dynamics is generated by the
time-dependent magnetic operator

H(t) = (−i∇−A− Fη(t))2 + V (x) = H(A(t), V ) , (3.5)

which is essentially self-adjoint on C∞c (Rd) with domain D := D(H) = D(H(t)) for
all t ∈ R. One has (see [BoGKS, Proposition 2.5])

H(t) = H − 2Fη(t) ·D(A) + Fη(t)2 on D(H), (3.6)

where D = D(A) is the closure of (−i∇ − A) as an operator from L2(Rd) to
L2(Rd; Cd) with domain C∞c (Rd). Each of its components Dj = Dj(A) = (−i ∂

∂xj
−

Aj), j = 1, . . . , d, is essentially self-adjoint on C∞c (Rd).
To see that such a family of operators generates the dynamics a quantum particle

in the presence of the time dependent spatially uniform electric field Eη(t) · x,
consider the gauge transformation

[G(t)ψ](x) := eiFη(t)·xψ(x) , (3.7)

so that

H(t) = G(t)
[
(−i∇−A)2 + V

]
G(t)∗ . (3.8)

Then if ψ(t) obeys Schrödinger equation

i∂tψ(t) = H(t)ψ(t), (3.9)

one has, formally,

i∂tG(t)∗ψ(t) =
[
(−i∇−A)2 + V + Eη(t) · x

]
G(t)∗ψ(t). (3.10)

To summarize the action of the gauge transformation we recall the

Lemma 3.1. [BoGKS, Lemma 2.6] Let G(t) be as in (3.7). Then

G(t)D = D , (3.11)
H(t) = G(t)HG(t)∗ , (3.12)

D(A + Fη(t)) = D(A)− Fη(t) = G(t)D(A)G(t)∗. (3.13)

Moreover, i[H(t), xj ] = 2D(A + Fη(t)) as quadratic forms on D ∩ D(xj), j =
1, 2, . . . , d.

The key observation is that the general theory of propagators with a time depen-
dent generator [Y, Theorem XIV.3.1] applies to H(t). It thus yields the existence
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of a two parameters family U(t, s) of unitary operators, jointly strongly continuous
in t and s, that solves the Schrödinger equation.

U(t, r)U(r, s) = U(t, s) (3.14)
U(t, t) = I (3.15)

U(t, s)D = D , (3.16)
i∂tU(t, s)ψ = H(t)U(t, s)ψ for all ψ ∈ D , (3.17)
i∂sU(t, s)ψ = −U(t, s)H(s)ψ for all ψ ∈ D . (3.18)

We refer to [BoGKS, Theorem 2.7] for other relevant properties.
To compute the linear response, we shall make use of the following “Duhamel

formula”. Let U (0)(t) = e−itH . For all ψ ∈ D and t, s ∈ R we have [BoGKS,
Lemma 2.8]

U(t, s)ψ = U (0)(t−s)ψ+i
∫ t

s

U (0)(t−r)(2Fη(r)·D(A)−Fη(r)2)U(r, s)ψ dr . (3.19)

Moreover,
lim
|E|→0

U(t, s) = U (0)(t− s) strongly . (3.20)

3.2. Adding the randomness. Let (Ω,P) be a probability space equipped with
an ergodic group {τa; a ∈ Zd} of measure preserving transformations. We study
operator–valued maps A : Ω 3 ω 7→ Aω.

Throughout the rest of this paper we shall use the material of Section 2 with
H = L2(Rd) and Z = Zd. The projective representation of Zd on H is given by
magnetic translations (U(a)ψ)(x) = eia·Sxψ(x − a), S being a given d × d real
matrix. The projection χa is the characteristic function of the unit cube of Rd

centered at a ∈ Zd.
In our context natural ∗-derivations arise:

∂jA := i[xj , A], j = 1, · · · , d, ∇A = i[x, A]. (3.21)

We shall now recall the material from [BoGKS, Section 4.3]. Proofs of assertions
are extensions of the arguments of [BoGKS] to the setting of Lp(K∞)-spaces. We
refer to [Do] for details.

We state the technical assumptions on our Hamiltonian of reference Hω.

Assumption 3.2. The ergodic Hamiltonian ω 7→ Hω is a measurable map from
the probability space (Ω,P) to self-adjoint operators on H such that

Hω = H(Aω, Vω) = (−i∇−Aω)2 + Vω , (3.22)

almost surely, where Aω (Vω) are vector (scalar) potential valued random variables
which satisfy the Leinfelder-Simader conditions (see Subsection 3.1) almost surely.
It is furthermore assumed that Hω is covariant as in (2.5). We denote by H the
operator (Hω)ω∈Ω acting on H̃.

As a consequence ‖f(Hω)‖ ≤ ‖f‖∞ and f(H) ∈ K∞ for every bounded Borel
function f on the real line. In particular H is affiliated to K∞. For P-a.e. ω,
let Uω(t, s) be the unitary propagator associated to Hω and described in Subsec-
tion 3.1. Note that (Uω(t, s))ω∈Ω ∈ K∞ (measurability in ω follows by construction
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of Uω(t, s), see [BoGKS]). For A ∈M(K∞) decomposable, let

U(t, s)(A) :=
∫ ⊕

Ω

Uω(t, s)AωUω(s, t) dP(ω). (3.23)

Then U(t, s) extends a linear operator on M(K∞), leaving invariant M(K∞) and
Lp(K∞), p ∈]0,∞], with

U(t, r)U(r, s) = U(t, s) , (3.24)
U(t, t) = I , (3.25)

{U(t, s)(A)}∗ = U(t, s)(A∗) . (3.26)

Moreover, U(t, s) is to a unitary on L2(K∞) and an isometry in Lp(K∞), p ∈]0,∞].
In addition, U(t, s) is jointly strongly continuous in t and s on Lp(K∞), p ∈]0,∞].

Pick p > 0. Let A ∈ Lp(K∞) be such that H(r0)A and AH(r0) are in Lp(K∞)
for some r0 ∈ [−∞,∞). Then both maps r 7→ U(t, r)(A) ∈ Lp(K∞) and t 7→
U(t, r)(A) ∈ Lp(K∞) are differentiable in Lp(K∞), with (recalling Definition 2.6)

i∂r U(t, r)(A) = −U(t, r)([H(r), A]). (3.27)
i∂t U(t, r)(A) = [H(t),U(t, r)(A)]. (3.28)

Moreover, for t0 <∞ given, there exists C = C(t0) <∞ such that for all t, r ≤ t0,

‖ (H(t) + γ)U(t, r)(A)‖p ≤ C‖(H(r) + γ)A‖p , (3.29)

‖[H(t),U(t, r)(A)]‖p ≤ C (‖(H(r) + γ)A‖p + ‖A(H(r) + γ)‖p) . (3.30)

We note that in order to apply the above formula and in particular (3.27) and
(3.28), it is actually enough to check that (H(r0) + γ)A and A(H(r0) + γ) are in
Lp(K∞).

Whenever we want to keep track of the dependence of Uω(t, s) on the electric
field E = Eη(t), we shall write Uω(E, t, s). When E = 0, note that

Uω(E = 0, t, s) = U (0)
ω (t− s) := e−i(t−s)Hω . (3.31)

For A ∈M(K∞) decomposable, we let

U (0)(r)(A) :=
∫ ⊕

Ω

U (0)
ω (r)AωU

(0)
ω (−r) dP(ω). (3.32)

We still denote by U (0)(r)(A) its extension to M(K∞).

Proposition 3.3. Let p ≥ 1 be given. U (0)(t) is a one-parameter group of operators
on M(K∞), leaving Lp(K∞) invariant. U (0)(t) is an isometry on Lp(K∞), and
unitary if p = 2. It is strongly continuous on Lp(K∞). We further denote by Lp

the infinitesimal generator of U (0)(t) in Lp(K∞):

U (0)(t) = e−itLp for all t ∈ R . (3.33)

The operator Lp is usually called the Liouvillian. Let

D(0)
p = {A ∈ Lp(K∞), HA,AH ∈ Lp(K∞)} . (3.34)

Then D(0)
p is an operator core for Lp (note that L2 is essentially self-adjoint on

D(0)
2 ), and

Lp(A) = [H,A] for all A ∈ D(0)
p . (3.35)

Moreover, for every Bω ∈ K∞ there exists a sequence Bn,ω ∈ D(0)
∞ such that Bn,ω →

Bω as a bounded and P-a.e.-strong limit.
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We finish this list of properties with the following lemma about the Gauge trans-
formations in spaces of measurable operators. The map

G(t)(A) = G(t)AG(t)∗ , (3.36)

with G(t) = ei
R t
−∞ Eη(s)·x as in (3.7), is an isometry on Lp(K∞), for p ∈]0,∞].

Lemma 3.4. For any p ∈]0,∞], the map G(t) is strongly continuous on Lp(K∞),
and

lim
t→−∞

G(t) = I strongly (3.37)

on Lp(K∞). Moreover, if A ∈ W1,p(K∞), then G(t)(A) is continuously differen-
tiable in Lp(K∞) with

∂tG(t)(A) = Eη(t) · ∇(G(t)(A)). (3.38)

4. Linear response theory and Kubo formula

4.1. Adiabatic switching of the electric field. We now fix an initial equilibrium
state of the system, i.e., we specify a density matrix ζω which is in equilibrium, so
[Hω, ζω] = 0. For physical applications, we would generally take ζω = f(Hω) with
f the Fermi-Dirac distribution at inverse temperature β ∈ (0,∞] and Fermi energy
EF ∈ R, i.e., f(E) = 1

1+eβ(E−EF ) if β < ∞ and f(E) = χ(−∞,EF ](E) if β = ∞;
explicitly

ζω =

{
F

(β,EF )
ω := 1

1+eβ(Hω−EF ) , β <∞ ,

P
(EF )
ω := χ(−∞,EF ](Hω) , β = ∞ .

(4.1)

However we note that our analysis allows for fairly general functions f [BoGKS].
We set ζ = (ζω)ω∈Ω ∈ K∞ but shall also write ζω instead of ζ. That f is the Fermi-
Dirac distribution plays no role in the derivation of the linear response. However
computing the Hall conductivity itself (once the linear response performed) we shall
restrict our attention to the zero temperature case with the Fermi projection P (EF )

ω .
The system is described by the ergodic time dependent Hamiltonian Hω(t), as

in (3.5). Assuming the system was in equilibrium at t = −∞ with the density
matrix %ω(−∞) = ζω, the time dependent density matrix %ω(t) is the solution of
the Cauchy problem for the Liouville equation. Since we shall solve the evolution
equation in Lp(K∞), we work with H(t) = (Hω(t))ω∈Ω, as in Assumption 3.2.

The electric field Eη(t) · x = eηtE(t) · x is swichted on adiabatically between
t = −∞ and t = t0 (typically t0 = 0). Depending on which conductivity on is
interested, one may consider different forms for E(t). In particular E(t) = E leads
to the direct conductivity, while E(t) = eiνtE leads to the AC-conductivity at
frequency ν1. The first one is relevant for studying the Quantum Hall effect (see
subsection 4.4), while the second enters the Mott’s formula [KLP, KLM].

We write

ζ(t) = G(t)ζG(t)∗ = G(t)(ζ), i.e., ζ(t) = f(H(t)). (4.2)

Theorem 4.1. Let η > 0 and assume that
∫ t

−∞ eηr|E(r)|dr <∞ for all t ∈ R. Let
p ∈ [1,∞[. Assume that ζ ∈ W1,p(K∞) and that H(∇ζ), (∇ζ)H ∈ Lp(K∞). The

1The AC-conductivity may be better defined using the from (4.23) as argued in [KLM].
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Cauchy problem {
i∂t%(t) = [H(t), %(t))]
limt→−∞ %(t) = ζ

, (4.3)

has a unique solution in Lp(K∞), that is given by

%(t) = lim
s→−∞

U(t, s) (ζ) (4.4)

= lim
s→−∞

U(t, s) (ζ(s)) (4.5)

= ζ(t)−
∫ t

−∞
dr eηrU(t, r)(E(r) · ∇ζ(r)). (4.6)

We also have

%(t) = U(t, s)(%(s)) , ‖%(t)‖p = ‖ζ‖p , (4.7)

for all t, s. Furthermore, %(t) is non-negative, and if ζ is a projection, then so is
%(t) for all t.

Remark 4.2. If the initial state ζ is of the form (4.1), then the hypotheses of
Theorem 4.1 hold for any p > 0, provided ζω = P

(EF )
ω that EF lies in a region

of localization. This is true for suitable Aω, Vω and EF , by the methods of, for
example, [CH, W, GK1, GK2, GK3, BoGK, AENSS, U, GrHK] and for the models
studied therein as well as in [CH, GK3]. The bound E‖|x|ζωχ0‖2 < ∞ or equiv-
alently ∇ζ ∈ L2(K∞) is actually sufficient for our applications. For p = 1, 2, we
refer to [BoGKS, Proposition 4.2] and [BoGKS, Lemma 5.4] for the derivation of
these hypotheses from known results.

Proof of Theorem 4.1. Let us first define

%(t, s) := U(t, s)(ζ(s)). (4.8)

We get, as operators in M(K∞),

∂s%(t, s) = iU(t, s) ([H(s), ζ(s)]) + U(t, s) (Eη(s) · ∇ζ(s))
= U(t, s) (Eη(s) · ∇ζ(s)) , (4.9)

where we used (3.27) and Lemma 3.4. As a consequence, with Eη(r) = eηrE(r),

%(t, t)− %(t, s) =
∫ t

s

dr eηrU(t, r)(E(r) · ∇ζ(r)). (4.10)

Since ‖U(t, r)(E(r) · ∇(ζ(r))‖p ≤ cd|E(r)| ‖∇ζ‖p < ∞, the integral is absolutely
convergent by hypothesis on Eη(t), and the limit as s→ −∞ can be performed in
Lp(K∞). It yields the equality between (4.5) and (4.6). Equality of (4.4) and (4.5)
follows from Lemma 3.4 which gives

ζ = lim
s→−∞

ζ(s) in Lp(K∞). (4.11)

Since U(t, s) are isometries on Lp(K∞), it follows from (4.4) that ‖%(t)‖p = ‖ζ‖p.
We also get %(t) = %(t)∗. Moreover, (4.4) with the limit in Lp(K∞) implies that
%(t) is nonnegative.

Furthermore, if ζ = ζ2 then %(t) can be seen to be a projection as follows. Note
that ∇ζ = ζ(∇ζ) + (∇ζ)ζ. Hölder inequalities imply that ζ ∈ W1,r(K∞) for any
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0 < r ≤ p, and that the previous analysis actually applies in any Lr(K∞), 0 < r ≤ p.
Denoting by lim(p) the limit in Lp(K∞), we have, with r = p/2,

%(t) = lim(r)

s→−∞
U(t, s) (ζ) = lim(r)

s→−∞
U(t, s) (ζ)U(t, s) (ζ)

=
{

lim(p)

s→−∞
U(t, s) (ζ)

} {
lim(p)

s→−∞
U(t, s) (ζ)

}
= %(t)2 . (4.12)

To see that %(t) is a solution of (4.3) in Lp(K∞), we differentiate the expression
(4.6) using (3.28) and Lemma 3.4. We get

i∂t%(t) = −
∫ t

−∞
dr eηr [H(t),U(t, r) (E(r) · ∇ζ(r))] (4.13)

= −
[
H(t),

{∫ t

−∞
dr eηrU(t, r) (E(r) · ∇ζ(r))

}]
(4.14)

=
[
H(t),

{
ζ(t)−

∫ t

−∞
dr eηrU(t, r) (E(r) · ∇ζ(r))

}]
= [H(t), %(t)] . (4.15)

The integral in (4.13) converges since by (3.30) ,

‖ [H(t),U(t, r) (E(r) · ∇ζ(r))] ‖p ≤ 2C‖(H + γ)(E(r) · ∇ζ)‖p. (4.16)

Then we justify going from (4.13) to (4.14) by inserting a resolvent (H(t) + γ)−1

and making use of (3.29).
It remains to show that the solution of (4.3) is unique in Lp(K∞). It suffices

to show that if ν(t) is a solution of (4.3) with ζ = 0 then ν(t) = 0 for all t. We
define ν̃(s)(t) = U(s, t)(ν(t)) and proceed by duality. Since p ≥ 1, with pick q s.t.
p−1 + q−1 = 1. If A ∈ D(0)

q , we have, using Lemma 2.4,

i∂tT
{
Aν̃(s)(t)

}
= i∂tT {U(t, s)(A)ν(t)} (4.17)

= T {[H(t),U(t, s)(A)] ν(t)}+ T {U(t, s)(A)Lq(t)(ν(t))}
= −T {U(t, s)(A)Lq(t)(ν(t))}+ T {U(t, s)(A) Lq(t)(ν(t))} = 0 .

We conclude that for all t and A ∈ D(0)
q we have

T
{
Aν̃(s)(t)

}
= T

{
Aν̃(s)(s)

}
= T {Aν(s)} . (4.18)

Thus ν̃(s)(t) = ν(s) by Lemma 2.3, that is, ν(t) = U(t, s)(ν(s)). Since by hypothesis
lims→−∞ ν(s) = 0, we obtain that ν(t) = 0 for all t. �

4.2. The current and the conductivity. The velocity operator v is defined as

v = v(A) = 2D(A), (4.19)

where D = D(A) is defined below (3.6). Recall that v = 2(−i∇−A) = i[H,x] on
C∞c (Rd). We also set D(t) = D(A + Fη(t)) as in (3.13), and v(t) = 2D(t).

From now on %(t) will denote the unique solution to (4.3), given explicitly in
(4.6). If H(t)%(t) ∈ Lp(K∞) then clearly Dj(t)%(t) can be defined as well by

Dj(t)%(t) =
(
Dj(t)(H(t) + γ)−1

)
((H(t) + γ)%(t)) , (4.20)

since Dj(t)(H(t) + γ)−1 ∈ K∞, and thus Dj(t)%(t) ∈ Lp(K∞).



LINEAR RESPONSE THEORY FOR RANDOM SCHRÖDINGER OPERATORS 13

Definition 4.3. Starting with a system in equilibrium in state ζ, the net current
(per unit volume), J(η,E; ζ, t0) ∈ Rd, generated by switching on an electric field E
adiabatically at rate η > 0 between time −∞ and time t0, is defined as

J(η,E; ζ, t0) = T (v(t0)%(t0))− T (vζ) . (4.21)

As it is well known, the current is null at equilibrium:

Lemma 4.4. One has T (Djζ) = 0 for all j = 1, · · · , d, and thus T (vζ) = 0.

Throughout the rest of this paper, we shall assume that the electric field has the
form

E(t) = E(t)E (4.22)

where E ∈ Cd gives the intensity of the electric in each direction while |E(t)| = O(1)
modulates this intensity as time varies. As pointed out above, the two cases of
particular interest are E(t) = 1 and E(t) = eiνt. We may however, as in [KLM], use
the more general form

E(t) =
∫

R
eiνtÊ(ν)dν, (4.23)

for suitable Ê(ν) (see [KLM]).
It is useful to rewrite the current (4.21), using (4.6) and Lemma 4.4, as

J(η,E; ζ, t0) = T {2D(0) (%(t0)− ζ(t0))} (4.24)

= −T
{

2
∫ t0

−∞
dr eηrD(0)U(t0, r) (E(r) · ∇ζ(r))

}
.

= −T
{

2
∫ t0

−∞
dr eηrE(r)D(0)U(t0, r) (E · ∇ζ(r))

}
.

The conductivity tensor σ(η; ζ, t0) is defined as the derivative of the function
J(η,E; ζ, t0) : Rd → Rd at E = 0. Note that σ(η; ζ, t0) is a d×dmatrix {σjk(η; ζ, t0)}.

Definition 4.5. For η > 0 and t0 ∈ R, the conductivity tensor σ(η; ζ, t0) is defined
as

σ(η; ζ, t0) = ∂E(J(η,E; ζ, t0))|E=0 , (4.25)

if it exists. The conductivity tensor σ(ζ, t0) is defined by

σ(ζ, t0) := lim
η↓0

σ(η; ζ, t0) , (4.26)

whenever the limit exists.

4.3. Computing the linear response: a Kubo formula for the conductiv-
ity. The next theorem gives a “Kubo formula” for the conductivity at positive
adiabatic parameter.

Theorem 4.6. Let η > 0. Under the hypotheses of Theorem 4.1 for p = 1, the
current J(η,E; ζ, t0) is differentiable with respect to E at E = 0 and the derivative
σ(η; ζ) is given by

σjk(η; ζ, t0) = −T
{

2
∫ t0

−∞
dr eηrE(r)Dj U (0)(t0 − r) (∂k(ζ))

}
. (4.27)

The analogue of [BES, Eq. (41)] and [SB2, Theorem 1] then holds:
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Corollary 4.7. Assume that E(t) = eiνt, ν ∈ R, then the conductivity σjk(η; ζ) is
given by

σjk(η; ζ, t0) = −e(η+iν)t0T
{
2Dj (iL1 + iν + η)−1 (∂kζ)}

}
, (4.28)

Proof of Theorem 4.6. For clarity, in this proof we display the argument E in all
functions which depend on E. From (4.24) and Jj(η, 0; ζ, t0) = 0 (Lemma 4.4), we
have

σjk(η; ζ, t0) = − lim
E→0

2T
{∫ t0

−∞
dr eηrE(r)DE,j(0)U(E, 0, r) (∂kζ(E, r))

}
. (4.29)

First understand we can interchange integration and the limit E → 0, and get

σjk(η; ζ, t0) = −2
∫ t0

−∞
dr eηrE(r) lim

E→0
T {Dj(E, 0)U(E, 0, r) (∂kζ(E, r))} . (4.30)

The latter can easily be seen by inserting a resolvent (H(t) + γ)−1 and making
use of (3.29), the fact that H∇ζ ∈ L1(K∞), the inequality : |T (A)| ≤ T (|A|) and
dominated convergence.

Next, we note that for any s we have

lim
E→0

G(E, s) = I strongly in L1(K∞) , (4.31)

which can be proven by a argument similar to the one used to prove Lemma 3.4.
Along the same lines, for B ∈ K∞ we have

lim
E→0

G(E, s)(Bω) = Bω strongly in H, with ‖G(E, s)(B)‖∞ = ‖B‖∞ . (4.32)

Recalling that Dj,ω(E, 0) = Dj,ω − Fj(0) and that ‖∂kζ(E, r)‖1 = ‖∂kζ‖1 < ∞,
using Lemma 2.5,

lim
E→0

T {Dj(E, 0)U(E, 0, r) (∂kζ(E, r))} = lim
E→0

T {DjU(E, 0, r)(∂kζ)U(E, r, 0)}

= lim
E→0

T
{
DjU(E, 0, r)(∂kζ)U (0)(r)

}
, (4.33)

where we have inserted (and removed) the resolvents (H(E, r)+γ)−1 and (H+γ)−1.
To proceed it is convenient to introduce a cutoff so that we can deal with Dj

as if it were in K∞. Thus we pick fn ∈ C∞c (R), real valued, |fn| ≤ 1, fn = 1 on
[−n, n], so that fn(H) converges strongly to 1. Using Lemma 2.5, we have

T
{
DjU(E, 0, r)(∂kζ)U (0)(r)

}
= lim

n→∞
T

{
fn(H)DjU(E, 0, r)(∂kζ)U (0)(r)

}
= lim

n→∞
T

{
U(E, 0, r) ((∂kζ)(H + γ))U (0)(r)(H + γ)−1fn(H)Dj

}
= T

{
U(E, 0, r) ((∂kζ)(H + γ))

(
U (0)(r)(H + γ)−1Dj

)}
, (4.34)

where we used the centrality of the trace, the fact that (H + γ)−1 commutes with
U (0) and then that (H+γ)−1Dj ∈ K∞ in order to remove to limit n→∞. Finally,
combining (4.33) and (4.34), we get

lim
E→0

T {Dj(E, 0)U(E, 0, r) (∂kζ(E, r))} (4.35)

= T
{
U (0)(−r) ((∂kζ)(H + γ))U (0)(r)(H + γ)−1Dj

}
= T

{
DjU (0)(−r)(∂kζ)

}
. (4.36)
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The Kubo formula (4.27) now follows from (4.30) and (4.36). �

4.4. The Kubo-Str̆eda formula for the Hall conductivity. Following [BES,
AG], we now recover the well-known Kubo-Str̆eda formula for the Hall conductivity
at zero temperature (see however Remark 4.11 for AC-conductivity). To that aim
we consider the case E(t) = 1 and t0 = 0. Recall Definition 4.5. We write

σ
(Ef )
j,k = σj,k(P (EF ), 0) , and σ

(Ef )
j,k (η) = σj,k(η;P (EF ), 0) . (4.37)

Theorem 4.8. Take E(t) = 1 and t0 = 0. If ζ = P (EF ) is a Fermi projection
satisfying the hypotheses of Theorem 4.1 with p = 2, we have

σ
(EF )
j,k = −iT

{
P (EF )

[
∂jP

(EF ), ∂kP
(EF )

]}
, (4.38)

for all j, k = 1, 2, . . . , d. As a consequence, the conductivity tensor is antisymmetric;
in particular σ(EF )

j,j = 0 for j = 1, 2, . . . , d.

Clearly the direct conductivity vanishes, σ(EF )
jj = 0. Note that, if the system is

time-reversible the off diagonal elements are zero in the region of localization, as
expected.

Corollary 4.9. Under the assumptions of Theorem 4.8, if A = 0 (no magnetic
field), we have σ(EF )

j,k = 0 for all j, k = 1, 2, . . . , d.

We have the crucial following lemma for computing the Kubo-Str̆eda formula,
which already appears in [BES] (and then in [AG]).

Lemma 4.10. Let P ∈ K∞ be a projection such that ∂kP ∈ Lp(K∞), then as
operators in M(K∞) (and thus in Lp(K∞)),

∂kP = [P, [P, ∂kP ]] . (4.39)

Proof. Note that ∂kP = ∂kP
2 = P∂kP +(∂kP )P so that multiplying left and right

both sides by P implies that P (∂kP )P = 0. We then have, in Lp(K∞),

∂kP = P∂kP + (∂kP )P = P∂kP + (∂kP )P − 2P (∂kP )P
= P (∂kP )(1− P ) + (1− P )(∂kP )P
= [P, [P, ∂kP ]] .

�

Remark that Lemma (4.10) heavily relies on the fact P is a projection. We shall
apply it to the situation of zero temperature, i.e. when the initial density matrix is
the orthogonal projection P (EF ). The argument would not go through at positive
temperature.

Proof of Theorem 4.8. We again regularize the velocity Dj,ω with a smooth func-
tion fn ∈ C∞c (R), |fn| ≤ 1, fn = 1 on [−n, n], but this time we also require that
fn = 0 outside [−n − 1, n + 1], so that fnχ[−n−1,n+1] = fn. Thus Djfn(H) ∈
Lp,o(K∞), 0 < p ≤ ∞. Moreover

fn(H)(2Dj)fn(H) = fn(H)Pn(2Dj)Pnfn(H) = −fn(H)∂j(PnH)fn(H) (4.40)
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where Pn = P 2
n = χ[−n−1,n+1](H) so that HPn is a bounded operator. We have,

using the centrality of the trace T , that

σ̃
(EF )
jk (r) := −T

{
2Dj,ωU (0)(−r)(∂kP

(EF ))
}

(4.41)

= − lim
n→∞

T
{
U (0)(r)(fn(H)2Dj,ωfn(H))∂kP

(EF )
}
. (4.42)

Using Lemma 2.7 and applying Lemma 4.10 applied to P = P (EF ), it follows that

T
{
U (0)(r)(fn(H)2Djfn(H))∂kP

(EF )
}

(4.43)

= T
{
U (0)(r)(fn(H)2Djfn(H))

[
P (EF ),

[
P (EF ), ∂kP

(EF )
]]}

= T
{
U (0)(r)

([
P (EF ),

[
P (EF ), fn(H)2Djfn(H)

]])
∂kP

(EF )
}
,

= −T
{
U (0)(r)

([
P (EF ), fn(H)

[
P (EF ), ∂j(HPn)

]
fn(H)

])
∂kP

(EF )
}
,

where we used that P (EF ) commutes with U (0) and fn(H), and (4.40). Now, as
elements in M(K∞), [

P (EF ), ∂jHPn

]
=

[
HPn, ∂jP

(EF )
]
. (4.44)

Since [H, ∂jP
(EF )]] is well defined by hypothesis, fn(H)

[
HPn, ∂jP

(EF )
]
fn(H) con-

verges in Lp to the latter as n goes to infinity. Combining (4.42), (4.43), and (4.44),
we get after taking n→∞,

σ̃
(EF )
jk (r) = −T

{
U (0)(r)

([
P (EF ),

[
H, ∂jP

(EF )
]])

∂kP
(EF )

}
. (4.45)

Next, [
P (EF ),

[
H, ∂jP

(EF )
]]

=
[
H,

[
P (EF ), ∂jP

(EF )
]]
, (4.46)

so that, recalling Proposition 3.3,

σ̃
(EF )
jk (r) = −T

{
U (0)(r)

([
H,

[
P (EF ), ∂jP

(EF )
]])

∂kP
(EF )

}
= −

〈
e−irLL2

([
P (EF ), ∂jP

(EF )
])
, ∂kP

(EF )
〉

L2
, (4.47)

where 〈A,B〉L2 = T (A∗B). Combining (4.27), (4.41), and (4.47), we get

σ
(EF )
jk (η) = −

〈
i (L2 + iη)−1 L2

([
P (EF ), ∂jP

(EF )
])
, ∂kP

(EF )
〉

L2
. (4.48)

It follows from the spectral theorem (applied to L2) that

lim
η→0

(L2 + iη)−1 L2 = P(KerL2)⊥ strongly in L2(K∞) , (4.49)

where P(KerL2)⊥ is the orthogonal projection onto (KerL2)⊥. Moreover, as in
[BoGKS] one can prove that[

P (EF ), ∂jP
(EF )

]
∈ (KerL2)⊥ . (4.50)

Combining (4.48), (4.49), (4.50), and Lemma 2.7, we get

σ
(EF )
j,k = i

〈[
P (EF ), ∂jP

(EF )
]
, ∂kP

(EF )
〉

L2
= −iT

{
P (EF )

[
∂jP

(EF ), ∂kP
(EF )

]}
,

which is just (4.38). �



LINEAR RESPONSE THEORY FOR RANDOM SCHRÖDINGER OPERATORS 17

Remark 4.11. If one is interested in the AC-conductivity, then the proof above is
valid up to (4.48). In particular, with E(t) = eiνt, one obtains

σ
(EF )
jk (η) = −

〈
i (L2 + ν + iη)−1 L2

([
P (EF ), ∂jP

(EF )
])
, ∂kP

(EF )
〉

L2
. (4.51)

The limit η → 0 can still be performed as in [KLM, Corollary 3.4]. It is the main
achievement of [KLM] to be able to investigate the behaviour of this limit as ν → 0
in connection with Mott’s formula.
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